吸附
阳离子聚合
吸附剂
解吸
环境修复
水解
吸附
铀
化学工程
材料科学
化学
有机化学
污染
工程类
生态学
生物
冶金
作者
Jie Li,Xing Dai,Lin Zhu,Chao Xu,Duo Zhang,Mark A. Silver,Peng Li,Quanqi Chen,Yongzhong Li,Douwen Zuo,Hui Zhang,Chengliang Xiao,Jing Chen,Juan Diwu,Omar K. Farha,Thomas E. Albrecht‐Schmitt,Zhifang Chai,Shuao Wang
标识
DOI:10.1038/s41467-018-05380-5
摘要
Abstract Direct removal of 99 TcO 4 − from the highly acidic solution of used nuclear fuel is highly beneficial for the recovery of uranium and plutonium and more importantly aids in the elimination of 99 Tc discharge into the environment. However, this task represents a huge challenge given the combined extreme conditions of super acidity, high ionic strength, and strong radiation field. Here we overcome this challenge using a cationic polymeric network with significant TcO 4 − uptake capabilities in four aspects: the fastest sorption kinetics, the highest sorption capacity, the most promising uptake performance from highly acidic solutions, and excellent radiation-resistance and hydrolytic stability among all anion sorbent materials reported. In addition, this material is fully recyclable for multiple sorption/desorption trials, making it extremely attractive for waste partitioning and emergency remediation. The excellent TcO 4 − uptake capability is elucidated by X-ray absorption spectroscopy, solid-state NMR measurement, and density functional theory analysis on anion coordination and bonding.
科研通智能强力驱动
Strongly Powered by AbleSci AI