Preoperative prediction for lymph node metastasis in early gastric cancer by interpretable machine learning models: A multicenter study

医学 接收机工作特性 转移 淋巴结 胃癌 癌症 肿瘤科 内科学 放射科 机器学习 人工智能 计算机科学
作者
Haixing Zhu,Gang Wang,Jinxing Zheng,Hai Zhu,Jun Huang,Enxi Luo,Xiaosi Hu,Yajun Wei,Cheng Wang,Aman Xu,Xinyang He
出处
期刊:Surgery [Elsevier]
卷期号:171 (6): 1543-1551 被引量:22
标识
DOI:10.1016/j.surg.2021.12.015
摘要

The presence of lymph node metastasis plays a decisive role in the selection of treatment options in patients with early gastric cancer. However, there is currently no established protocol to predict the risk of lymph node metastasis before/after endoscopic resection. The aim of this study was to develop and validate several machine learning algorithms for clinical practice.A total of 2,348 patients with early gastric cancer were selected from 5 major tertiary medical centers. We applied 6 machine learning algorithms to develop lymph node metastasis prediction models for clinical feature variables. The partial dependence plots were used to explain the prediction of the models. The area under the receiver operating characteristic curve and area under the precision recall curve were measured to assess the detection performance. The R shiny interactive web application was used to translate the prediction model in a clinical setting.The incidence of lymph node metastasis in patients with early gastric cancer was 13.63% (320/2348) and significantly higher in young women, in the lower third of the stomach, with a size >2 cm, depressed type, poorly/nondifferentiated, lymphovascular invasion, nerve invasion, and submucosal infiltration. In terms of age, there is a nonlinear and younger trend. XGBOOST displayed the best predictive performance at the initial and postendoscopy evaluation. In addition, the machine learning algorithm was converted to a user-friendly web tool for patients and clinicians.XGBOOST can predict the risk of lymph node metastasis with best accuracy in patients with early gastric cancer. Our online web application may help determine the optimal best surgical option for patients with early gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助jgpiao采纳,获得10
刚刚
夹心发布了新的文献求助10
1秒前
阿湫完成签到 ,获得积分10
1秒前
111111zx111发布了新的文献求助10
1秒前
ClarkLee发布了新的文献求助10
1秒前
3秒前
为三而舞发布了新的文献求助10
3秒前
文在否完成签到,获得积分10
3秒前
4秒前
hrrypeet完成签到,获得积分10
4秒前
敏感惜萍完成签到,获得积分20
5秒前
guoguo发布了新的文献求助10
5秒前
乐乐应助lvlulu21采纳,获得10
6秒前
ZTT发布了新的文献求助10
8秒前
bkagyin应助任风采纳,获得10
8秒前
9秒前
小二郎应助单薄凌蝶采纳,获得10
9秒前
10秒前
文在否发布了新的文献求助10
10秒前
CipherSage应助jgpiao采纳,获得10
11秒前
原居正发布了新的文献求助10
11秒前
迷路的小狗完成签到,获得积分10
12秒前
天天快乐应助guoguo采纳,获得10
12秒前
chenchenchen发布了新的文献求助10
14秒前
乐乐应助HLT采纳,获得10
14秒前
娜娜完成签到,获得积分10
16秒前
所所应助Fandebiao采纳,获得10
17秒前
17秒前
自觉的盼芙完成签到,获得积分20
17秒前
17秒前
_呱_完成签到,获得积分10
18秒前
共享精神应助为三而舞采纳,获得10
19秒前
大个应助guoguo采纳,获得10
20秒前
泽Y完成签到 ,获得积分10
21秒前
chenchenchen发布了新的文献求助10
21秒前
21秒前
tracywan完成签到,获得积分10
21秒前
23秒前
24秒前
小马甲应助66_采纳,获得10
24秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
纳米碳材料 400
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3336751
求助须知:如何正确求助?哪些是违规求助? 2965380
关于积分的说明 8619555
捐赠科研通 2644418
什么是DOI,文献DOI怎么找? 1448025
科研通“疑难数据库(出版商)”最低求助积分说明 670923
邀请新用户注册赠送积分活动 659504