Self-trained prediction model and novel anomaly score mechanism for video anomaly detection

异常检测 异常(物理) 计算机科学 边距(机器学习) 人工智能 模式识别(心理学) 机器学习 凝聚态物理 物理
作者
Aibin Guo,Lijun Guo,Rong Zhang,Yirui Wang,Shangce Gao
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:119: 104391-104391 被引量:9
标识
DOI:10.1016/j.imavis.2022.104391
摘要

Video anomaly detection is important in various practical applications. This paper proposes an unsupervised method for video anomaly detection. In the core of the method lies a new prediction model for anomaly detection with novel anomaly score mechanism and self-training mechanism combined with prediction model. In the first stage, we use two conventional unsupervised anomaly detection methods to obtain pseudo normal and anomalous frames from the original unlabeled data. In the second stage, we train the prediction model with the pseudo normal frames to learn normal patterns. In the last stage, a three-branch decision module is constructed using prediction model and decision function to calculate the anomaly score of frames and update the pseudo frames for subsequent iterative training. The model then enters the second stage, until the last iterative training is completed. After several iterative training and evaluations, the optimal anomaly scores of the original unlabeled data are finally obtained, and a stable model is generated at the same time. Experimental results on four real-world video datasets demonstrate that the proposed method outperforms state-of-the-art methods without labeled data by a significant margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无处不在完成签到 ,获得积分10
1秒前
anan应助平常的如风采纳,获得10
1秒前
Puffkten发布了新的文献求助10
1秒前
大个应助海盐气泡水采纳,获得10
2秒前
2秒前
2秒前
龙妍琳完成签到,获得积分10
2秒前
2秒前
ame关闭了ame文献求助
3秒前
goldNAN发布了新的文献求助10
3秒前
Unlung发布了新的文献求助10
3秒前
我是老大应助适可而止采纳,获得10
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
雪山飞发布了新的文献求助100
3秒前
3秒前
3秒前
FashionBoy应助尼i采纳,获得10
3秒前
秀秀应助科研通管家采纳,获得10
3秒前
HeAuBook应助科研通管家采纳,获得20
3秒前
浮游应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
BioZheng应助科研通管家采纳,获得10
4秒前
BioZheng应助科研通管家采纳,获得10
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得100
5秒前
无花果应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得30
5秒前
等待吐司应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287058
求助须知:如何正确求助?哪些是违规求助? 4439572
关于积分的说明 13822123
捐赠科研通 4321561
什么是DOI,文献DOI怎么找? 2372031
邀请新用户注册赠送积分活动 1367525
关于科研通互助平台的介绍 1331007