A review on 2D instance segmentation based on deep neural networks

分割 计算机科学 人工智能 深度学习 人工神经网络 市场细分 图像分割 基于分割的对象分类 模式识别(心理学) 深层神经网络 尺度空间分割 机器学习 营销 业务
作者
Wenchao Gu,Shuang Bai,Lingxing Kong
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:120: 104401-104401 被引量:101
标识
DOI:10.1016/j.imavis.2022.104401
摘要

Image instance segmentation involves labeling pixels of images with classes and instances, which is one of the pivotal technologies in many domains, such as natural scenes understanding, intelligent driving, augmented reality and medical image analysis. With the power of deep learning, instance segmentation methods that use this technique have recently achieved remarkable progress. In this survey, we mainly discuss the representative 2D instance segmentation methods based on deep neural networks. Firstly, we summarize current fully-, weakly- and semi-supervised instance segmentation methods, and divide existing fully-supervised methods into three sub-categories depending on the number of stages. Based on our investigation, we conclude that currently, two-stage methods dominate the frontier of general instance segmentation; single-stage methods can achieve a better speed-accuracy trade-off, and multi-stage methods can achieve higher accuracy. Secondly, we introduce eleven datasets and three evaluation metrics for evaluating instance segmentation methods that can help researchers decide which one to choose to meet their needs and goals. Then the innovation and quantitative results of state-of-the-art general instance segmentation methods and specific instance segmentation methods (including salient instance segmentation, person instance segmentation, and amodal instance segmentation) are reviewed. In what follows, the common backbone networks are reviewed to better explain the reasons that why deep neural networks-based instance segmentation methods can achieve excellent performance. Finally, the future research directions and potential applications of instance segmentation are discussed, which can facilitates researchers to realize the existing technical difficulties and recent research hotspots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助lcm采纳,获得10
1秒前
务实的罡发布了新的文献求助10
1秒前
筱尤完成签到 ,获得积分20
1秒前
jeep先生完成签到,获得积分10
1秒前
陈晗予完成签到,获得积分10
1秒前
阿争发布了新的文献求助10
2秒前
小二郎应助xuanqing采纳,获得10
2秒前
隐形曼青应助离心力采纳,获得10
3秒前
3秒前
如果完成签到,获得积分10
4秒前
Timing发布了新的文献求助10
4秒前
SAI发布了新的文献求助10
4秒前
Arkhamk完成签到,获得积分10
4秒前
riverhj完成签到,获得积分10
4秒前
可爱的函函应助fenhuo采纳,获得10
5秒前
6秒前
充电宝应助啦啦啦啦啦采纳,获得10
6秒前
6秒前
riverhj发布了新的文献求助10
7秒前
7秒前
从从余余完成签到,获得积分10
8秒前
英俊的铭应助fleee采纳,获得10
8秒前
泡面加蛋发布了新的文献求助10
8秒前
9秒前
Jasper应助宋1234采纳,获得10
9秒前
9秒前
why完成签到,获得积分10
10秒前
Leoitch发布了新的文献求助10
11秒前
12秒前
12秒前
生如夏花发布了新的文献求助10
12秒前
领导范儿应助淡定小蜜蜂采纳,获得10
12秒前
高贵香完成签到,获得积分10
13秒前
Owen应助郑木木采纳,获得10
14秒前
从从余余发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144780
求助须知:如何正确求助?哪些是违规求助? 2796171
关于积分的说明 7818496
捐赠科研通 2452363
什么是DOI,文献DOI怎么找? 1304950
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449