A review on 2D instance segmentation based on deep neural networks

分割 计算机科学 人工智能 深度学习 人工神经网络 市场细分 图像分割 基于分割的对象分类 模式识别(心理学) 深层神经网络 尺度空间分割 机器学习 营销 业务
作者
Wenchao Gu,Shuang Bai,Lingxing Kong
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:120: 104401-104401 被引量:124
标识
DOI:10.1016/j.imavis.2022.104401
摘要

Image instance segmentation involves labeling pixels of images with classes and instances, which is one of the pivotal technologies in many domains, such as natural scenes understanding, intelligent driving, augmented reality and medical image analysis. With the power of deep learning, instance segmentation methods that use this technique have recently achieved remarkable progress. In this survey, we mainly discuss the representative 2D instance segmentation methods based on deep neural networks. Firstly, we summarize current fully-, weakly- and semi-supervised instance segmentation methods, and divide existing fully-supervised methods into three sub-categories depending on the number of stages. Based on our investigation, we conclude that currently, two-stage methods dominate the frontier of general instance segmentation; single-stage methods can achieve a better speed-accuracy trade-off, and multi-stage methods can achieve higher accuracy. Secondly, we introduce eleven datasets and three evaluation metrics for evaluating instance segmentation methods that can help researchers decide which one to choose to meet their needs and goals. Then the innovation and quantitative results of state-of-the-art general instance segmentation methods and specific instance segmentation methods (including salient instance segmentation, person instance segmentation, and amodal instance segmentation) are reviewed. In what follows, the common backbone networks are reviewed to better explain the reasons that why deep neural networks-based instance segmentation methods can achieve excellent performance. Finally, the future research directions and potential applications of instance segmentation are discussed, which can facilitates researchers to realize the existing technical difficulties and recent research hotspots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feifei发布了新的文献求助10
刚刚
1秒前
魁拔蛮吉完成签到 ,获得积分10
3秒前
晓峰完成签到,获得积分20
3秒前
yearluren完成签到,获得积分10
3秒前
peiyy完成签到,获得积分10
3秒前
领导范儿应助TT采纳,获得10
8秒前
清脆代桃完成签到 ,获得积分10
8秒前
科研通AI5应助ghh采纳,获得10
8秒前
叫滚滚发布了新的文献求助10
8秒前
北极熊爱去非洲买蜂蜜小蛋糕完成签到 ,获得积分10
10秒前
yeyong11完成签到,获得积分10
13秒前
CodeCraft应助柔弱的鱼采纳,获得30
14秒前
黄可以完成签到,获得积分10
14秒前
美少叔叔完成签到 ,获得积分10
15秒前
心灵美的修洁完成签到 ,获得积分10
16秒前
lzd完成签到,获得积分10
18秒前
19秒前
诸笑白发布了新的文献求助10
21秒前
21秒前
研友_LOK59L完成签到,获得积分10
23秒前
七子完成签到 ,获得积分10
24秒前
郑盼秋完成签到,获得积分10
24秒前
youjiang发布了新的文献求助10
25秒前
27秒前
孤独收割人完成签到,获得积分10
27秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
29秒前
Upupcc发布了新的文献求助10
31秒前
31秒前
勤劳落雁发布了新的文献求助10
32秒前
32秒前
32秒前
33秒前
33秒前
33秒前
周周发布了新的文献求助10
33秒前
34秒前
科研通AI5应助解青文采纳,获得10
34秒前
科研通AI5应助魏伯安采纳,获得30
34秒前
nekoneko完成签到,获得积分10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849