已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing

高光谱成像 环境科学 遥感 土壤碳 均方误差 土壤水分 大气辐射传输码 土壤科学 成像光谱仪 偏最小二乘回归 决定系数 辐射传输 计算机科学 机器学习 地质学 数学 分光计 物理 统计 量子力学
作者
Sheng Wang,Kaiyu Guan,Chenhui Zhang,DoKyoung Lee,Andrew J. Margenot,Yufeng Ge,Jian Peng,Wang Zhou,Qu Zhou,Yizhi Huang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:271: 112914-112914 被引量:126
标识
DOI:10.1016/j.rse.2022.112914
摘要

Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to exploit soil hyperspectral reflectance to predict SOC concentration, and the potential performance of airborne and satellite data for predicting surface SOC at large scales remain relatively underknown. This study utilized a continental-scale soil laboratory spectral library (37,540 full-pedon 350–2500 nm reflectance spectra with SOC concentration of 0–780 g·kg−1 across the US) to thoroughly evaluate seven machine learning algorithms including Partial-Least Squares Regression (PLSR), Random Forest (RF), K-Nearest Neighbors (KNN), Ridge, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) along with four preprocessed spectra, i.e. original, vector normalization, continuum removal, and first-order derivative, to quantify SOC concentration. Furthermore, by using the coupled soil-vegetation-atmosphere radiative transfer model, we simulated twelve airborne and spaceborne hyper/multi-spectral remote sensing data from surface bare soil laboratory spectra to evaluate their potential for estimating SOC concentration of surface bare soils. Results show that LSTM achieved best predictive performance of quantifying SOC concentration for the whole data sets (R2 = 0.96, RMSE = 30.81 g·kg−1), mineral soils (SOC ≤ 120 g·kg−1, R2 = 0.71, RMSE = 10.60 g·kg−1), and organic soils (SOC > 120 g·kg−1, R2 = 0.78, RMSE = 62.31 g·kg−1). Spectral data preprocessing, particularly the first-order derivative, improved the performance of PLSR, RF, Ridge, KNN, and ANN, but not LSTM or CNN. We found that the SOC models of mineral and organic soils should be distinguished given their distinct spectral signatures. Finally, we identified that the shortwave infrared is vital for airborne and spaceborne hyperspectral sensors to monitor surface SOC. This study highlights the high accuracy of LSTM with hyperspectral/multispectral data to mitigate a certain level of noise (soil moisture <0.4 m3·m−3, green leaf area < 0.3 m2·m−2, plant residue <0.4 m2·m−2) for quantifying surface SOC concentration. Forthcoming satellite hyperspectral missions like Surface Biology and Geology (SBG) have a high potential for future global soil carbon monitoring, while high-resolution satellite multispectral fusion data can be an alternative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
小飞鼠发布了新的文献求助10
刚刚
不懈奋进应助科研通管家采纳,获得30
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
科研通AI5应助yy采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
迟大猫应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
wangjun应助lzx采纳,获得10
刚刚
刚刚
1秒前
庆次完成签到 ,获得积分10
2秒前
南岸娜娜完成签到,获得积分10
2秒前
淡然又蓝发布了新的文献求助10
4秒前
4秒前
8秒前
Ziyi_Xu发布了新的文献求助10
9秒前
9秒前
10秒前
小飞鼠完成签到,获得积分10
10秒前
14秒前
玛丽发布了新的文献求助10
14秒前
善学以致用应助linyalala采纳,获得10
15秒前
17秒前
安大师完成签到 ,获得积分20
18秒前
CodeCraft应助Wmhuahuaood采纳,获得10
18秒前
JamesPei应助小小酥采纳,获得10
18秒前
汀芷黎发布了新的文献求助10
19秒前
ChanghuoC发布了新的文献求助10
19秒前
19秒前
21秒前
斯文败类应助无聊的落雁采纳,获得10
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538747
求助须知:如何正确求助?哪些是违规求助? 3116472
关于积分的说明 9325379
捐赠科研通 2814343
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720644
科研通“疑难数据库(出版商)”最低求助积分说明 712109