Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing

高光谱成像 环境科学 遥感 土壤碳 均方误差 土壤水分 大气辐射传输码 土壤科学 成像光谱仪 偏最小二乘回归 决定系数 辐射传输 计算机科学 机器学习 地质学 数学 分光计 统计 物理 量子力学
作者
Sheng Wang,Kaiyu Guan,Chenhui Zhang,DoKyoung Lee,Andrew J. Margenot,Yufeng Ge,Jian Peng,Wang Zhou,Qu Zhou,Yizhi Huang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:271: 112914-112914 被引量:126
标识
DOI:10.1016/j.rse.2022.112914
摘要

Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to exploit soil hyperspectral reflectance to predict SOC concentration, and the potential performance of airborne and satellite data for predicting surface SOC at large scales remain relatively underknown. This study utilized a continental-scale soil laboratory spectral library (37,540 full-pedon 350–2500 nm reflectance spectra with SOC concentration of 0–780 g·kg−1 across the US) to thoroughly evaluate seven machine learning algorithms including Partial-Least Squares Regression (PLSR), Random Forest (RF), K-Nearest Neighbors (KNN), Ridge, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) along with four preprocessed spectra, i.e. original, vector normalization, continuum removal, and first-order derivative, to quantify SOC concentration. Furthermore, by using the coupled soil-vegetation-atmosphere radiative transfer model, we simulated twelve airborne and spaceborne hyper/multi-spectral remote sensing data from surface bare soil laboratory spectra to evaluate their potential for estimating SOC concentration of surface bare soils. Results show that LSTM achieved best predictive performance of quantifying SOC concentration for the whole data sets (R2 = 0.96, RMSE = 30.81 g·kg−1), mineral soils (SOC ≤ 120 g·kg−1, R2 = 0.71, RMSE = 10.60 g·kg−1), and organic soils (SOC > 120 g·kg−1, R2 = 0.78, RMSE = 62.31 g·kg−1). Spectral data preprocessing, particularly the first-order derivative, improved the performance of PLSR, RF, Ridge, KNN, and ANN, but not LSTM or CNN. We found that the SOC models of mineral and organic soils should be distinguished given their distinct spectral signatures. Finally, we identified that the shortwave infrared is vital for airborne and spaceborne hyperspectral sensors to monitor surface SOC. This study highlights the high accuracy of LSTM with hyperspectral/multispectral data to mitigate a certain level of noise (soil moisture <0.4 m3·m−3, green leaf area < 0.3 m2·m−2, plant residue <0.4 m2·m−2) for quantifying surface SOC concentration. Forthcoming satellite hyperspectral missions like Surface Biology and Geology (SBG) have a high potential for future global soil carbon monitoring, while high-resolution satellite multispectral fusion data can be an alternative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
danli完成签到 ,获得积分10
1秒前
guangyu完成签到,获得积分10
3秒前
学术老6完成签到,获得积分10
4秒前
c123完成签到 ,获得积分10
6秒前
恐怖稽器人完成签到,获得积分10
6秒前
WXR完成签到,获得积分10
7秒前
科研小白完成签到,获得积分10
7秒前
8秒前
可爱丸子完成签到,获得积分10
8秒前
皮汤汤完成签到 ,获得积分10
9秒前
JXDYYZK完成签到,获得积分10
10秒前
SYLH应助lu采纳,获得10
10秒前
Servant2023完成签到,获得积分10
10秒前
鸽子的迷信完成签到,获得积分10
12秒前
nine2652完成签到 ,获得积分10
13秒前
烂漫的睫毛完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
陈老太完成签到 ,获得积分10
16秒前
宇宇宇c完成签到,获得积分10
17秒前
zxt完成签到,获得积分10
18秒前
大橙子发布了新的文献求助10
21秒前
聪明静柏完成签到 ,获得积分10
23秒前
kimiwanano完成签到,获得积分10
25秒前
lu完成签到,获得积分10
26秒前
Profeto应助齐嫒琳采纳,获得10
27秒前
28秒前
情怀应助科研通管家采纳,获得10
29秒前
从来都不会放弃zr完成签到,获得积分10
33秒前
1459完成签到,获得积分10
35秒前
行者+完成签到,获得积分10
35秒前
GongSyi完成签到 ,获得积分10
36秒前
Boris完成签到 ,获得积分10
38秒前
哭泣笑柳完成签到,获得积分10
38秒前
万能图书馆应助大橙子采纳,获得10
41秒前
大眼睛土豆完成签到,获得积分10
45秒前
一条虫gg完成签到,获得积分10
48秒前
49秒前
50秒前
53秒前
大橙子发布了新的文献求助10
53秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022