Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing

高光谱成像 环境科学 遥感 土壤碳 均方误差 土壤水分 大气辐射传输码 土壤科学 成像光谱仪 偏最小二乘回归 决定系数 辐射传输 计算机科学 机器学习 地质学 数学 分光计 统计 物理 量子力学
作者
Sheng Wang,Kaiyu Guan,Chenhui Zhang,DoKyoung Lee,Andrew J. Margenot,Yufeng Ge,Jian Peng,Wang Zhou,Qu Zhou,Yizhi Huang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:271: 112914-112914 被引量:126
标识
DOI:10.1016/j.rse.2022.112914
摘要

Soil organic carbon (SOC) is a key variable to determine soil functioning, ecosystem services, and global carbon cycles. Spectroscopy, particularly optical hyperspectral reflectance coupled with machine learning, can provide rapid, efficient, and cost-effective quantification of SOC. However, how to exploit soil hyperspectral reflectance to predict SOC concentration, and the potential performance of airborne and satellite data for predicting surface SOC at large scales remain relatively underknown. This study utilized a continental-scale soil laboratory spectral library (37,540 full-pedon 350–2500 nm reflectance spectra with SOC concentration of 0–780 g·kg−1 across the US) to thoroughly evaluate seven machine learning algorithms including Partial-Least Squares Regression (PLSR), Random Forest (RF), K-Nearest Neighbors (KNN), Ridge, Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) along with four preprocessed spectra, i.e. original, vector normalization, continuum removal, and first-order derivative, to quantify SOC concentration. Furthermore, by using the coupled soil-vegetation-atmosphere radiative transfer model, we simulated twelve airborne and spaceborne hyper/multi-spectral remote sensing data from surface bare soil laboratory spectra to evaluate their potential for estimating SOC concentration of surface bare soils. Results show that LSTM achieved best predictive performance of quantifying SOC concentration for the whole data sets (R2 = 0.96, RMSE = 30.81 g·kg−1), mineral soils (SOC ≤ 120 g·kg−1, R2 = 0.71, RMSE = 10.60 g·kg−1), and organic soils (SOC > 120 g·kg−1, R2 = 0.78, RMSE = 62.31 g·kg−1). Spectral data preprocessing, particularly the first-order derivative, improved the performance of PLSR, RF, Ridge, KNN, and ANN, but not LSTM or CNN. We found that the SOC models of mineral and organic soils should be distinguished given their distinct spectral signatures. Finally, we identified that the shortwave infrared is vital for airborne and spaceborne hyperspectral sensors to monitor surface SOC. This study highlights the high accuracy of LSTM with hyperspectral/multispectral data to mitigate a certain level of noise (soil moisture <0.4 m3·m−3, green leaf area < 0.3 m2·m−2, plant residue <0.4 m2·m−2) for quantifying surface SOC concentration. Forthcoming satellite hyperspectral missions like Surface Biology and Geology (SBG) have a high potential for future global soil carbon monitoring, while high-resolution satellite multispectral fusion data can be an alternative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yisu完成签到,获得积分10
刚刚
顷梦完成签到,获得积分10
1秒前
可玩性发布了新的文献求助50
1秒前
1秒前
1秒前
1秒前
long发布了新的文献求助10
2秒前
烟花应助Natforever采纳,获得10
2秒前
2秒前
英姑应助晁子枫采纳,获得10
3秒前
flysky120发布了新的文献求助10
4秒前
空山新雨发布了新的文献求助10
4秒前
JamesPei应助小章鱼采纳,获得10
4秒前
李健应助www采纳,获得10
5秒前
乐乐应助勤奋梨愁采纳,获得10
6秒前
6秒前
乐乐应助cnas采纳,获得10
6秒前
7秒前
耶嘿完成签到,获得积分10
7秒前
7秒前
7秒前
皮蛋s周发布了新的文献求助30
8秒前
所所应助Tony12采纳,获得10
8秒前
8秒前
花鳥院夕月完成签到,获得积分10
8秒前
鲤鱼寻菡完成签到,获得积分10
8秒前
9秒前
10秒前
jiajia发布了新的文献求助10
10秒前
15关闭了15文献求助
10秒前
10秒前
10秒前
pluto应助踏实乌冬面采纳,获得10
10秒前
空山新雨完成签到,获得积分10
10秒前
干净月亮完成签到,获得积分10
11秒前
ommphey发布了新的文献求助10
11秒前
小羊发布了新的文献求助10
12秒前
李慧发布了新的文献求助10
12秒前
科研小白发布了新的文献求助30
12秒前
LL完成签到 ,获得积分10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974712
求助须知:如何正确求助?哪些是违规求助? 3519159
关于积分的说明 11197254
捐赠科研通 3255257
什么是DOI,文献DOI怎么找? 1797724
邀请新用户注册赠送积分活动 877130
科研通“疑难数据库(出版商)”最低求助积分说明 806132