A deep helmet wearing detection method based on attention mechanism and stochastic weight averaging

计算机科学 人工智能 钥匙(锁) 机制(生物学) 光学(聚焦) 目标检测 深度学习 过程(计算) 机器学习 模式识别(心理学) 计算机安全 认识论 操作系统 光学 物理 哲学
作者
Huizhou Li,Liping Zhang,Shuo Gao
标识
DOI:10.1117/12.2635414
摘要

Helmet wearing is one of the most effective means of ensuring the personal safety of workers at job sites such as construction sites. Improving the accuracy of helmet wearing detection is one of the key technologies for intelligent helmet wearing supervision. To address the problem that the YOLO v5 target detection algorithm fails to focus on important features in the process of extracting features, a YOLO v5 algorithm based on the attention mechanism is proposed to pay attention to important features to improve the detection accuracy. Then, the model is optimized based on the idea of stochastic weight averaging to further improve the model detection performance. The specific method is as follows: After the training iteration until the model accuracy is stable, the learning rate is adjusted to train multiple model parameters, and the final weight model is obtained by stochastic weight averaging. The improved YOLO v5 target detection method has higher detection accuracy than Faster R-CNN, SSD, YOLO v3, YOLO v4, and other detection algorithms, with about 2.3% improvement over YOLO v5, which prove that attention mechanism and stochastic weight averaging are effective methods to improve the performance of helmet detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
zzy完成签到,获得积分10
刚刚
1秒前
1秒前
科研通AI6应助霸王学习机采纳,获得30
1秒前
吴龙完成签到,获得积分10
1秒前
姜姜完成签到,获得积分10
1秒前
千里发布了新的文献求助10
1秒前
顾矜应助曾开心采纳,获得10
2秒前
ZbF发布了新的文献求助10
2秒前
2秒前
无奈的乐安完成签到,获得积分10
2秒前
q12完成签到,获得积分10
2秒前
2秒前
2秒前
该房地产个人的完成签到,获得积分10
3秒前
3秒前
123完成签到,获得积分10
3秒前
3秒前
zhengzehong完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
雾1206完成签到,获得积分10
5秒前
xiaoweiba完成签到,获得积分10
5秒前
猪猪hero发布了新的文献求助10
5秒前
科研通AI2S应助他方世界采纳,获得10
5秒前
活泼的大船完成签到,获得积分10
6秒前
6秒前
FashionBoy应助积极的Fang采纳,获得10
6秒前
7秒前
怡定早睡完成签到,获得积分10
7秒前
7秒前
一YI发布了新的文献求助10
7秒前
7秒前
czz发布了新的文献求助10
7秒前
8秒前
Perry完成签到,获得积分10
8秒前
9秒前
薯条完成签到,获得积分10
9秒前
weifengzhong完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328