清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Safe intuitionistic fuzzy twin support vector machine for semi-supervised learning

半监督学习 人工智能 计算机科学 支持向量机 机器学习 水准点(测量) 分类器(UML) 监督学习 样品(材料) 模式识别(心理学) 人工神经网络 大地测量学 色谱法 化学 地理
作者
Lan Bai,Xu Chen,Zhen Wang,Yuan‐Hai Shao
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:123: 108906-108906 被引量:12
标识
DOI:10.1016/j.asoc.2022.108906
摘要

Learning unlabeled samples without deteriorating performance is a challenge in semi-supervised learning. In this paper, we propose a safe intuitionistic fuzzy twin support vector machine (SIFTSVM) for semi-supervised learning. In our SIFTSVM, whether an unlabeled sample should be learned by a twin support vector machine is determined by its plane intuitionistic fuzzy number. The unlabeled samples are learned gradually according to the current decision environment, which is safer and more precise than learning all of the unlabeled samples simultaneously. Interestingly, the iterative algorithm of our SIFTSVM obtains a solution to a mixed integer programming problem whose global solution corresponds to a classifier by learning the unlabeled samples with implicit labels. Experimental results on several synthetic datasets confirm the safety of our SIFTSVM for learning unlabeled samples, and the results on 56 groups of benchmark datasets demonstrate that our SIFTSVM outperforms the state-of-the-art semi-supervised classifiers on most groups.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灿烂而孤独的八戒完成签到 ,获得积分0
28秒前
lucky完成签到 ,获得积分10
31秒前
绿色猫猫头完成签到 ,获得积分10
48秒前
CodeCraft应助斯提亚拉采纳,获得10
49秒前
wrl2023完成签到,获得积分10
56秒前
BowieHuang应助科研通管家采纳,获得10
1分钟前
Qing完成签到 ,获得积分10
1分钟前
nextconnie完成签到,获得积分10
1分钟前
1分钟前
斯提亚拉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI6应助liwen采纳,获得10
2分钟前
2分钟前
龚文亮完成签到,获得积分10
2分钟前
慕青应助狂野宛凝采纳,获得10
2分钟前
常有李完成签到,获得积分10
2分钟前
2分钟前
殷勤的紫槐应助科研通管家采纳,获得200
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
tt完成签到,获得积分10
4分钟前
4分钟前
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
4分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
狂野宛凝发布了新的文献求助10
5分钟前
5分钟前
5分钟前
领导范儿应助Gryphon采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
Gryphon发布了新的文献求助10
6分钟前
打打应助Gryphon采纳,获得10
6分钟前
6分钟前
liwen发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554955
求助须知:如何正确求助?哪些是违规求助? 4639554
关于积分的说明 14656343
捐赠科研通 4581473
什么是DOI,文献DOI怎么找? 2512827
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503