Load forecasting of district heating system based on Informer

计算机科学 采暖系统 环境科学 工程类 机械工程
作者
Mingju Gong,Yin Zhao,Jiawang Sun,Cuitian Han,Guannan Sun,Bo Yan
出处
期刊:Energy [Elsevier BV]
卷期号:253: 124179-124179 被引量:118
标识
DOI:10.1016/j.energy.2022.124179
摘要

Accurate load forecasting of district heating systems (DHSs) is an essential guide to guaranteeing effective energy production, distribution, and rational utilization. Artificial neural networks have been extensively applied to heating energy prediction in DHS. Recently, a new time series prediction model namely Informer was proposed. This study proposes an Informer-based framework for DHS heating load forecasting. To explore the performance of Informer in heating load forecasting tasks, four forecasting models namely Autoregressive Integrated Moving Average model, Multilayer Perceptron, Recurrent Neural Network and Long Short-Term Memory network are established for comparison. The historical heating load, outdoor temperature, relative humidity, wind speed and air quality index of a DHS in Tianjin are used as the input characteristics to comprehensively assess the performance of these five forecasting strategies. The prediction results of the models are evaluated and visualized. The experimental results show that the Informer-based forecasting model can achieve the most accurate and stable predictions. Furthermore, a relative position encoding algorithm is introduced to enhance its generalization and robustness. Overall, the Informer-based framework can report satisfactory testing results. The prediction curve is fitted to the trend of temperature change which can play an excellent guiding role in heating dispatching. • A new framework based on Informer is proposed for heating load forecasting of a DHS in Tianjin, China. • Informer is compared with other four popular prediction models namely ARIMA, MLP, RNN and LSTM. • The performance of Informer in heating load forecasting has been verified. • A relative position coding is introduced to improve the prediction ability of Informer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要忆秋完成签到,获得积分10
刚刚
yy发布了新的文献求助10
刚刚
wwm98656完成签到,获得积分10
3秒前
3秒前
totpto完成签到,获得积分20
4秒前
6秒前
My完成签到,获得积分10
6秒前
孙颖莎粉丝完成签到,获得积分10
6秒前
尼古拉耶维奇完成签到,获得积分10
6秒前
阿卡宁发布了新的文献求助10
7秒前
8秒前
温柔翰完成签到,获得积分10
9秒前
文龙完成签到 ,获得积分10
9秒前
10秒前
Xiaopan完成签到,获得积分10
10秒前
xiaoming发布了新的文献求助200
11秒前
11秒前
QT完成签到,获得积分20
12秒前
朱华彪完成签到,获得积分10
12秒前
活在当下发布了新的文献求助10
12秒前
12秒前
haha发布了新的文献求助10
13秒前
aurora完成签到 ,获得积分10
14秒前
茉莉完成签到,获得积分10
14秒前
123完成签到,获得积分10
16秒前
16秒前
wwewew完成签到,获得积分10
17秒前
saying发布了新的文献求助10
17秒前
123123完成签到,获得积分10
17秒前
隐形曼青应助阿卡宁采纳,获得10
18秒前
负责紊完成签到,获得积分10
18秒前
善良的火发布了新的文献求助10
20秒前
haha完成签到,获得积分10
20秒前
22秒前
sugar完成签到,获得积分10
23秒前
活在当下完成签到,获得积分10
23秒前
25秒前
ssy发布了新的文献求助10
25秒前
小嘉贞完成签到,获得积分10
27秒前
鸡蛋黄完成签到,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048