Load forecasting of district heating system based on Informer

计算机科学 采暖系统 环境科学 工程类 机械工程
作者
Mingju Gong,Yin Zhao,Jiawang Sun,Cuitian Han,Guannan Sun,Bo Yan
出处
期刊:Energy [Elsevier]
卷期号:253: 124179-124179 被引量:91
标识
DOI:10.1016/j.energy.2022.124179
摘要

Accurate load forecasting of district heating systems (DHSs) is an essential guide to guaranteeing effective energy production, distribution, and rational utilization. Artificial neural networks have been extensively applied to heating energy prediction in DHS. Recently, a new time series prediction model namely Informer was proposed. This study proposes an Informer-based framework for DHS heating load forecasting. To explore the performance of Informer in heating load forecasting tasks, four forecasting models namely Autoregressive Integrated Moving Average model, Multilayer Perceptron, Recurrent Neural Network and Long Short-Term Memory network are established for comparison. The historical heating load, outdoor temperature, relative humidity, wind speed and air quality index of a DHS in Tianjin are used as the input characteristics to comprehensively assess the performance of these five forecasting strategies. The prediction results of the models are evaluated and visualized. The experimental results show that the Informer-based forecasting model can achieve the most accurate and stable predictions. Furthermore, a relative position encoding algorithm is introduced to enhance its generalization and robustness. Overall, the Informer-based framework can report satisfactory testing results. The prediction curve is fitted to the trend of temperature change which can play an excellent guiding role in heating dispatching. • A new framework based on Informer is proposed for heating load forecasting of a DHS in Tianjin, China. • Informer is compared with other four popular prediction models namely ARIMA, MLP, RNN and LSTM. • The performance of Informer in heating load forecasting has been verified. • A relative position coding is introduced to improve the prediction ability of Informer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱洗澡的拖鞋完成签到 ,获得积分10
刚刚
刚刚
yayabing完成签到,获得积分10
1秒前
FashionBoy应助艾利克斯采纳,获得10
1秒前
科研通AI2S应助娜行采纳,获得10
1秒前
SciGPT应助碧蓝的曼岚采纳,获得10
2秒前
3秒前
科研通AI2S应助蓝色采纳,获得10
3秒前
是星星啊完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助完美的海秋采纳,获得10
4秒前
5秒前
6秒前
壮观以松发布了新的文献求助10
7秒前
默默幼珊完成签到,获得积分10
8秒前
优秀老师完成签到,获得积分10
8秒前
高挑的如柏完成签到,获得积分10
9秒前
仔仔发布了新的文献求助10
10秒前
糜厉发布了新的文献求助10
10秒前
10秒前
是星星啊发布了新的文献求助10
10秒前
冒险寻羊完成签到,获得积分10
11秒前
yml完成签到,获得积分20
12秒前
12秒前
12秒前
loka完成签到,获得积分10
14秒前
14秒前
CodeCraft应助Doctor-C采纳,获得10
14秒前
gugugu完成签到,获得积分10
14秒前
WWW完成签到,获得积分10
15秒前
bkagyin应助科学实验站采纳,获得10
15秒前
沙发睡不着完成签到,获得积分20
16秒前
是十二呀发布了新的文献求助10
17秒前
王大贵完成签到,获得积分20
18秒前
18秒前
cliche发布了新的文献求助10
18秒前
Hello应助糜厉采纳,获得10
19秒前
橙子abcy发布了新的文献求助10
20秒前
爆米花应助izumi采纳,获得10
20秒前
zhenzhen完成签到,获得积分10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244106
求助须知:如何正确求助?哪些是违规求助? 2887900
关于积分的说明 8250281
捐赠科研通 2556472
什么是DOI,文献DOI怎么找? 1384639
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625975