锌
纳米材料
材料科学
生物相容性
排水
抗菌剂
纳米技术
核化学
化学
冶金
有机化学
生态学
生物
作者
Tao Li,Chao Zhang,Jingyu Jia,Xigao Cheng
标识
DOI:10.1177/08853282221114382
摘要
Surgical site infections (SSI) represent a considerable burden for healthcare systems. Studies show retrograde infection of the drainage tube is an important cause of surgical site infection. To this end, Surgeons work in various ways to reduce the incidence of retrograde infections. Fast progress in nanoscience and nanotechnology is revolutionizing the field of medicine to improve the quality of life due to the myriad of applications stemming from their unique properties, including the antibacterial activity against pathogens. Herein, we investigate the antibacterial properties of a novel nanomaterial composed of nano zinc oxide-decorated latex drainages. These materials were produced by the hydrothermal method and characterized through field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and DLS (Dynamic light scattering techniques). Then inductively coupled plasma mass spectrometry (ICP-MS) measurements showed that nano zinc oxide on the surface of the latex drainages showed a gradient release process. The antimicrobial activity of nano zinc oxide -decorated latex drainage was evaluated against E. coli and Staphylococcus aureus, the main bacteriological agent in the retrograde infection associated with drainage. The results showed that slices and rods nano zinc oxide (SAR-ZnO) drainage tubes had the best antibacterial properties both in vivo and in vitro. In addition, the cell viability assay demonstrated that nano zinc oxide-decorated latex drainages exerted good biocompatibility. Therefore, SAR-ZnO drainage tubes can be a perfect nanomaterial against the retrograde infection associated with drainage.
科研通智能强力驱动
Strongly Powered by AbleSci AI