Backdoor Attacks and Defenses in Federated Learning: State-of-the-Art, Taxonomy, and Future Directions

后门 计算机科学 计算机安全 联合学习 异常检测 深度学习 国家(计算机科学) 训练集 人工智能 机器学习 算法
作者
Xueluan Gong,Yanjiao Chen,Qian Wang,Weihan Kong
出处
期刊:IEEE Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:30 (2): 114-121 被引量:87
标识
DOI:10.1109/mwc.017.2100714
摘要

The federated learning framework is designed for massively distributed training of deep learning models among thousands of participants without compromising the privacy of their training datasets. The training dataset across participants usually has heterogeneous data distributions. Besides, the central server aggregates the updates provided by different parties, but has no visibility into how such updates are created. The inherent characteristics of federated learning may incur a severe security concern. The malicious participants can upload poisoned updates to introduce backdoored functionality into the global model, in which the backdoored global model will misclassify all the malicious images (i.e., attached with the backdoor trigger) into a false label but will behave normally in the absence of the backdoor trigger. In this work, we present a comprehensive review of the state-of-the-art backdoor attacks and defenses in federated learning. We classify the existing backdoor attacks into two categories: data poisoning attacks and model poisoning attacks, and divide the defenses into anomaly updates detection, robust federated training, and backdoored model restoration. We give a detailed comparison of both attacks and defenses through experiments. Lastly, we pinpoint a variety of potential future directions of both backdoor attacks and defenses in the framework of federated learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恰逢发布了新的文献求助10
刚刚
聪明的大树完成签到,获得积分10
刚刚
nn发布了新的文献求助30
刚刚
桐桐应助xzjz采纳,获得10
1秒前
Jasmine完成签到,获得积分10
2秒前
合适夏天完成签到,获得积分10
2秒前
2秒前
3秒前
隐形曼青应助Xue采纳,获得10
3秒前
Summer完成签到 ,获得积分10
3秒前
叶若相怜完成签到,获得积分20
3秒前
晴云发布了新的文献求助10
3秒前
3秒前
无极微光应助momo采纳,获得20
3秒前
欢呼的飞荷完成签到,获得积分10
4秒前
科研通AI6应助1816013153采纳,获得10
4秒前
WXR完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
合适的柏柳完成签到,获得积分10
5秒前
开心蛋挞完成签到,获得积分10
5秒前
jack完成签到,获得积分10
6秒前
852应助海棠先雪采纳,获得10
6秒前
快乐小天使完成签到,获得积分10
6秒前
凤梨头完成签到,获得积分10
6秒前
6秒前
6秒前
代纤绮完成签到,获得积分10
7秒前
7秒前
CipherSage应助Catloaf采纳,获得10
8秒前
8秒前
橙子发布了新的文献求助10
8秒前
today完成签到,获得积分10
9秒前
科研通AI6应助Jasmine采纳,获得30
9秒前
小刚发布了新的文献求助30
9秒前
9秒前
jack发布了新的文献求助10
9秒前
科研通AI6应助5555采纳,获得10
9秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581313
求助须知:如何正确求助?哪些是违规求助? 4665766
关于积分的说明 14758178
捐赠科研通 4607617
什么是DOI,文献DOI怎么找? 2528305
邀请新用户注册赠送积分活动 1497589
关于科研通互助平台的介绍 1466474