Backdoor Attacks and Defenses in Federated Learning: State-of-the-Art, Taxonomy, and Future Directions

后门 计算机科学 计算机安全 联合学习 异常检测 深度学习 国家(计算机科学) 训练集 人工智能 机器学习 算法
作者
Xueluan Gong,Yanjiao Chen,Qian Wang,Weihan Kong
出处
期刊:IEEE Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:30 (2): 114-121 被引量:87
标识
DOI:10.1109/mwc.017.2100714
摘要

The federated learning framework is designed for massively distributed training of deep learning models among thousands of participants without compromising the privacy of their training datasets. The training dataset across participants usually has heterogeneous data distributions. Besides, the central server aggregates the updates provided by different parties, but has no visibility into how such updates are created. The inherent characteristics of federated learning may incur a severe security concern. The malicious participants can upload poisoned updates to introduce backdoored functionality into the global model, in which the backdoored global model will misclassify all the malicious images (i.e., attached with the backdoor trigger) into a false label but will behave normally in the absence of the backdoor trigger. In this work, we present a comprehensive review of the state-of-the-art backdoor attacks and defenses in federated learning. We classify the existing backdoor attacks into two categories: data poisoning attacks and model poisoning attacks, and divide the defenses into anomaly updates detection, robust federated training, and backdoored model restoration. We give a detailed comparison of both attacks and defenses through experiments. Lastly, we pinpoint a variety of potential future directions of both backdoor attacks and defenses in the framework of federated learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
Eraser完成签到,获得积分10
2秒前
小小完成签到,获得积分10
4秒前
letter完成签到,获得积分10
4秒前
只昂张发布了新的文献求助10
4秒前
无敌霸王花应助终醒采纳,获得20
4秒前
6秒前
酷炫的安雁完成签到 ,获得积分10
6秒前
7秒前
LAN0528完成签到,获得积分10
8秒前
笃定发布了新的文献求助10
8秒前
zcl应助温暖的雨旋采纳,获得100
9秒前
6692067发布了新的文献求助10
9秒前
10秒前
木木完成签到,获得积分20
10秒前
叁壹粑粑发布了新的文献求助30
11秒前
学术蛔虫完成签到 ,获得积分10
12秒前
Olsters完成签到,获得积分10
13秒前
123321完成签到,获得积分10
13秒前
13秒前
笃定完成签到,获得积分10
15秒前
桐桐应助XTQ采纳,获得10
15秒前
6692067完成签到,获得积分10
16秒前
大王叫我来巡山完成签到,获得积分10
17秒前
17秒前
18秒前
平常紫安完成签到 ,获得积分10
19秒前
mr_beard完成签到 ,获得积分10
21秒前
21秒前
李白发布了新的文献求助10
22秒前
一一完成签到,获得积分10
23秒前
科研通AI6应助Julie采纳,获得30
24秒前
24秒前
qrwyqjbsd应助洗刷刷采纳,获得10
24秒前
25秒前
amanda应助wgw采纳,获得20
26秒前
27秒前
NEXUS1604举报正宗求助涉嫌违规
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429