Backdoor Attacks and Defenses in Federated Learning: State-of-the-Art, Taxonomy, and Future Directions

后门 计算机科学 计算机安全 联合学习 异常检测 深度学习 国家(计算机科学) 训练集 人工智能 机器学习 算法
作者
Xueluan Gong,Yanjiao Chen,Qian Wang,Weihan Kong
出处
期刊:IEEE Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:30 (2): 114-121 被引量:87
标识
DOI:10.1109/mwc.017.2100714
摘要

The federated learning framework is designed for massively distributed training of deep learning models among thousands of participants without compromising the privacy of their training datasets. The training dataset across participants usually has heterogeneous data distributions. Besides, the central server aggregates the updates provided by different parties, but has no visibility into how such updates are created. The inherent characteristics of federated learning may incur a severe security concern. The malicious participants can upload poisoned updates to introduce backdoored functionality into the global model, in which the backdoored global model will misclassify all the malicious images (i.e., attached with the backdoor trigger) into a false label but will behave normally in the absence of the backdoor trigger. In this work, we present a comprehensive review of the state-of-the-art backdoor attacks and defenses in federated learning. We classify the existing backdoor attacks into two categories: data poisoning attacks and model poisoning attacks, and divide the defenses into anomaly updates detection, robust federated training, and backdoored model restoration. We give a detailed comparison of both attacks and defenses through experiments. Lastly, we pinpoint a variety of potential future directions of both backdoor attacks and defenses in the framework of federated learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zycdx3906发布了新的文献求助10
刚刚
刚刚
1秒前
初见发布了新的文献求助10
2秒前
猪猪hero发布了新的文献求助10
4秒前
4秒前
AA18236931952发布了新的文献求助10
4秒前
卡卡完成签到,获得积分10
5秒前
zycdx3906完成签到,获得积分10
6秒前
Marcus完成签到,获得积分10
8秒前
闵松岳发布了新的文献求助10
8秒前
11秒前
shhoing应助卡卡采纳,获得10
11秒前
李嘉衡完成签到 ,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
852应助yydd采纳,获得10
13秒前
科研通AI2S应助ikuaikuai采纳,获得10
14秒前
zzyytt完成签到,获得积分10
14秒前
17秒前
若水完成签到 ,获得积分10
17秒前
18秒前
顺利完成签到,获得积分10
19秒前
彭于晏应助a.........采纳,获得10
21秒前
大模型应助黎敏采纳,获得10
21秒前
Kannan发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
南桥枝完成签到 ,获得积分10
24秒前
哈哈完成签到,获得积分20
24秒前
可爱的妙海完成签到,获得积分20
25秒前
oaim完成签到,获得积分10
25秒前
qianqiu完成签到 ,获得积分10
25秒前
哈哈发布了新的文献求助30
27秒前
27秒前
啦啦啦啦关注了科研通微信公众号
27秒前
迅速的仰发布了新的文献求助10
27秒前
赘婿应助稳重的十月采纳,获得20
28秒前
Owen应助HAHA采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123