Backdoor Attacks and Defenses in Federated Learning: State-of-the-Art, Taxonomy, and Future Directions

后门 计算机科学 计算机安全 联合学习 异常检测 深度学习 国家(计算机科学) 训练集 人工智能 机器学习 算法
作者
Xueluan Gong,Yanjiao Chen,Qian Wang,Weihan Kong
出处
期刊:IEEE Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:30 (2): 114-121 被引量:16
标识
DOI:10.1109/mwc.017.2100714
摘要

The federated learning framework is designed for massively distributed training of deep learning models among thousands of participants without compromising the privacy of their training datasets. The training dataset across participants usually has heterogeneous data distributions. Besides, the central server aggregates the updates provided by different parties, but has no visibility into how such updates are created. The inherent characteristics of federated learning may incur a severe security concern. The malicious participants can upload poisoned updates to introduce backdoored functionality into the global model, in which the backdoored global model will misclassify all the malicious images (i.e., attached with the backdoor trigger) into a false label but will behave normally in the absence of the backdoor trigger. In this work, we present a comprehensive review of the state-of-the-art backdoor attacks and defenses in federated learning. We classify the existing backdoor attacks into two categories: data poisoning attacks and model poisoning attacks, and divide the defenses into anomaly updates detection, robust federated training, and backdoored model restoration. We give a detailed comparison of both attacks and defenses through experiments. Lastly, we pinpoint a variety of potential future directions of both backdoor attacks and defenses in the framework of federated learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘佳佳完成签到,获得积分10
1秒前
香蕉觅云应助等待的士晋采纳,获得10
1秒前
1秒前
QQ完成签到 ,获得积分10
1秒前
西蓝花完成签到,获得积分10
1秒前
3秒前
MoXian完成签到,获得积分10
3秒前
小赖皮啦发布了新的文献求助10
3秒前
藜藜藜在乎你完成签到 ,获得积分10
3秒前
shmily发布了新的文献求助10
3秒前
www发布了新的文献求助30
4秒前
Clara发布了新的文献求助10
4秒前
标致的又槐完成签到,获得积分10
4秒前
通达完成签到,获得积分10
4秒前
李二狗完成签到,获得积分10
4秒前
清脆的白开水完成签到,获得积分10
4秒前
ZZZ完成签到,获得积分20
4秒前
香蕉觅云应助chenxiaolei采纳,获得10
5秒前
神勇老虎发布了新的文献求助10
5秒前
抠鼻公主完成签到 ,获得积分10
5秒前
6秒前
xiaobai完成签到,获得积分10
6秒前
6秒前
思雨完成签到,获得积分10
7秒前
7秒前
8秒前
ZZZ发布了新的文献求助10
8秒前
hhww完成签到,获得积分10
8秒前
凌柏完成签到 ,获得积分10
9秒前
ZEM发布了新的文献求助10
9秒前
FBQZDJG2122发布了新的文献求助10
11秒前
田様应助gc采纳,获得10
11秒前
11秒前
11秒前
凌柏关注了科研通微信公众号
12秒前
12秒前
leee完成签到,获得积分20
12秒前
悦耳紫霜完成签到,获得积分10
12秒前
小黄发布了新的文献求助10
13秒前
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3230573
求助须知:如何正确求助?哪些是违规求助? 2877975
关于积分的说明 8203640
捐赠科研通 2545364
什么是DOI,文献DOI怎么找? 1375054
科研通“疑难数据库(出版商)”最低求助积分说明 647249
邀请新用户注册赠送积分活动 622264