Backdoor Attacks and Defenses in Federated Learning: State-of-the-Art, Taxonomy, and Future Directions

后门 计算机科学 计算机安全 联合学习 异常检测 深度学习 国家(计算机科学) 训练集 人工智能 机器学习 算法
作者
Xueluan Gong,Yanjiao Chen,Qian Wang,Weihan Kong
出处
期刊:IEEE Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:30 (2): 114-121 被引量:16
标识
DOI:10.1109/mwc.017.2100714
摘要

The federated learning framework is designed for massively distributed training of deep learning models among thousands of participants without compromising the privacy of their training datasets. The training dataset across participants usually has heterogeneous data distributions. Besides, the central server aggregates the updates provided by different parties, but has no visibility into how such updates are created. The inherent characteristics of federated learning may incur a severe security concern. The malicious participants can upload poisoned updates to introduce backdoored functionality into the global model, in which the backdoored global model will misclassify all the malicious images (i.e., attached with the backdoor trigger) into a false label but will behave normally in the absence of the backdoor trigger. In this work, we present a comprehensive review of the state-of-the-art backdoor attacks and defenses in federated learning. We classify the existing backdoor attacks into two categories: data poisoning attacks and model poisoning attacks, and divide the defenses into anomaly updates detection, robust federated training, and backdoored model restoration. We give a detailed comparison of both attacks and defenses through experiments. Lastly, we pinpoint a variety of potential future directions of both backdoor attacks and defenses in the framework of federated learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
不想再哭发布了新的文献求助10
1秒前
CheeseD发布了新的文献求助10
1秒前
故渊完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
张爽发布了新的文献求助20
3秒前
故渊发布了新的文献求助10
5秒前
啊嘞嘞发布了新的文献求助10
6秒前
Amy发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
张献忠发布了新的文献求助10
9秒前
9秒前
325715完成签到,获得积分10
10秒前
学术妲己完成签到,获得积分10
10秒前
李亚楠完成签到,获得积分10
11秒前
ZZY关闭了ZZY文献求助
11秒前
AG杰完成签到 ,获得积分20
12秒前
量子星尘发布了新的文献求助10
14秒前
工艺员发布了新的文献求助10
14秒前
Amy完成签到,获得积分10
15秒前
gww发布了新的文献求助10
16秒前
张献忠完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
17秒前
18秒前
CipherSage应助zerovb3采纳,获得10
18秒前
解语花发布了新的文献求助50
21秒前
21秒前
21秒前
健壮问枫发布了新的文献求助30
22秒前
22秒前
23秒前
缘起缘灭完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4590231
求助须知:如何正确求助?哪些是违规求助? 4005083
关于积分的说明 12400271
捐赠科研通 3682147
什么是DOI,文献DOI怎么找? 2029449
邀请新用户注册赠送积分活动 1063022
科研通“疑难数据库(出版商)”最低求助积分说明 948604