State-of-Health Estimation With Anomalous Aging Indicator Detection of Lithium-Ion Batteries Using Regression Generative Adversarial Network

鉴别器 计算机科学 正规化(语言学) 数据挖掘 回归 人工智能 相关性 机器学习 统计 数学 几何学 电信 探测器
作者
Guangcai Zhao,Chenghui Zhang,Bin Duan,Rui Zhu
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (3): 2685-2695
标识
DOI:10.1109/tie.2022.3170630
摘要

Accurate state-of-health (SOH) estimation for data-driven method is still a great challenge, as real SOH is difficult to measure during the actual application of lithium-ion battery, and the noise or sensor failure may be also involved. To face these challenges, we propose a novel regression generative adversarial network to obtain a general model for batteries with the same specifications. Firstly, we develop the generator to automatically generate auxiliary training samples with similar but different distributions with real samples, which acts as data augmentation. Meanwhile, the discriminator is designed to detect anomalous aging indicators by learning the distribution of real samples, which is without the requirement of collecting anomalous samples. To capture shallow general aging knowledge, a shallow layer sharing mechanism between the discriminator and regressor is developed for regularization benefit. Finally, we propose a general model building rule based on the optimal correlation between SOH and features. The experimental results show our general model rule is effective for collected datasets of both LiNCM and LiFePO4 batteries. For datasets with small correlation differences, the effectiveness of the general model is no longer limited by the selection of datasets. Besides, compared to other advanced models, our method could achieve superior prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助犹豫的寄文采纳,获得10
1秒前
茶柠完成签到 ,获得积分10
2秒前
pharma发布了新的文献求助10
2秒前
3秒前
康康发布了新的文献求助10
4秒前
听风吹完成签到,获得积分10
4秒前
5秒前
6秒前
yrll发布了新的文献求助10
7秒前
Lemrain发布了新的文献求助10
8秒前
Orange应助冷酷从云采纳,获得10
8秒前
苏silence发布了新的文献求助10
9秒前
9秒前
小蘑菇应助坚强的初夏采纳,获得10
10秒前
传奇3应助shinn采纳,获得10
11秒前
13秒前
double_x发布了新的文献求助10
16秒前
科研通AI2S应助clyhg采纳,获得10
16秒前
16秒前
赘婿应助研友_8D3Y3Z采纳,获得10
16秒前
17秒前
学生白发布了新的文献求助10
18秒前
longxin关注了科研通微信公众号
18秒前
18秒前
19秒前
19秒前
科研通AI5应助麻师长采纳,获得10
20秒前
深情安青应助YING采纳,获得10
20秒前
evelynnni完成签到,获得积分10
20秒前
苏silence发布了新的文献求助10
21秒前
lzs发布了新的文献求助10
21秒前
ZhangR发布了新的文献求助10
22秒前
大个应助小综的fan儿采纳,获得10
22秒前
22秒前
shinn发布了新的文献求助10
23秒前
evelynnni发布了新的文献求助30
23秒前
小黄发布了新的文献求助10
24秒前
24秒前
万能图书馆应助碧蓝醉蝶采纳,获得10
25秒前
旺仔发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967699
求助须知:如何正确求助?哪些是违规求助? 3512860
关于积分的说明 11165281
捐赠科研通 3247897
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804550