已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Nuclide Identification Algorithm for the Large-Size Plastic Detectors Based on Artificial Neural Network

算法 人工智能 计算机科学 物理
作者
Cao Van Hiep,Tien Hung Dinh,Nguyen Ngoc Anh,Nguyen Ninh Giang,Pham Dinh Khang,Nguyễn Xuân Hải,Nguyen Ninh Giang,Tien Hung Dinh,Van Chuan Phan
出处
期刊:IEEE Transactions on Nuclear Science [Institute of Electrical and Electronics Engineers]
卷期号:69 (6): 1203-1211 被引量:7
标识
DOI:10.1109/tns.2022.3173371
摘要

This article proposes a multi-label classification model using an artificial neural network (ANN) to identify both an individual and a mixture of radionuclides in gamma spectra obtained from a $250\times 250\times 50$ -mm 3 EJ-200 plastic scintillation detector. This model is evaluated under the scenario applied to pedestrian radiation portal monitors (RPMs) to judge how well it works in practice. The simulated and measured gamma of 241 Am, 133 Ba, 137 Cs, 60 Co, 152 Eu, and $^{131}\text{I}$ radioactive sources and background are used to generate the training dataset. Measurement data with varying source-to-detector distances, shielding thicknesses, and incidence angles are also taken into account. The experimental results show that the mean value of the accuracy can be achieved at about 98.8% and 94.9% for single- and multi-isotope identification, respectively. In addition, the model can well precisely recognize radionuclides in the gamma spectrum whose gain shift is up to 10%. The dependence of the true positive (TP) rate on the count quality factors of individual radionuclides, which was defined as the ratio between the net count rate and its associated uncertainty, is examined. The detection sensitivities, defined as the minimum count quality factor to obtain a TP rate of 95%, for 241 Am, 133 Ba, 137 Cs, 60 Co, 152 Eu, and $^{131}\text{I}$ are 8.90, 11.86, 8.96, 8.21, 12.54, and 11.89, respectively. With such encouraging results, the proposed model should be a useful technique for radionuclide recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美天蓝完成签到 ,获得积分10
1秒前
lkx发布了新的文献求助10
3秒前
GingerF应助msn00采纳,获得50
4秒前
Bin_Liu发布了新的文献求助10
5秒前
wsb76完成签到 ,获得积分10
6秒前
小宁完成签到 ,获得积分10
6秒前
sci大户发布了新的文献求助10
6秒前
一道光完成签到,获得积分10
8秒前
9秒前
寻道图强举报一只龟龟求助涉嫌违规
11秒前
葱葱完成签到,获得积分10
12秒前
缘__发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
呵呵完成签到 ,获得积分10
16秒前
Mufreh应助科研通管家采纳,获得300
16秒前
微微旺旺应助科研通管家采纳,获得50
16秒前
17秒前
17秒前
怕孤单的幼荷完成签到 ,获得积分10
19秒前
黄金完成签到,获得积分10
20秒前
20秒前
王先生发布了新的文献求助10
21秒前
宁过儿发布了新的文献求助10
21秒前
oscar完成签到,获得积分10
21秒前
橙橙完成签到 ,获得积分10
22秒前
Jasper应助Wdw2236采纳,获得10
23秒前
orixero应助chigga采纳,获得10
23秒前
23秒前
26秒前
黄金发布了新的文献求助10
27秒前
kw98完成签到 ,获得积分10
28秒前
睿123完成签到 ,获得积分10
28秒前
29秒前
著名番茄完成签到,获得积分10
30秒前
30秒前
31秒前
Wdw2236发布了新的文献求助10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772052
求助须知:如何正确求助?哪些是违规求助? 5595492
关于积分的说明 15428899
捐赠科研通 4905183
什么是DOI,文献DOI怎么找? 2639251
邀请新用户注册赠送积分活动 1587158
关于科研通互助平台的介绍 1542040