Nuclide Identification Algorithm for the Large-Size Plastic Detectors Based on Artificial Neural Network

算法 人工智能 计算机科学 物理
作者
Cao Van Hiep,Tien Hung Dinh,Nguyen Ngoc Anh,Nguyen Ninh Giang,Pham Dinh Khang,Nguyễn Xuân Hải,Nguyen Ninh Giang,Tien Hung Dinh,Van Chuan Phan
出处
期刊:IEEE Transactions on Nuclear Science [Institute of Electrical and Electronics Engineers]
卷期号:69 (6): 1203-1211 被引量:7
标识
DOI:10.1109/tns.2022.3173371
摘要

This article proposes a multi-label classification model using an artificial neural network (ANN) to identify both an individual and a mixture of radionuclides in gamma spectra obtained from a $250\times 250\times 50$ -mm 3 EJ-200 plastic scintillation detector. This model is evaluated under the scenario applied to pedestrian radiation portal monitors (RPMs) to judge how well it works in practice. The simulated and measured gamma of 241 Am, 133 Ba, 137 Cs, 60 Co, 152 Eu, and $^{131}\text{I}$ radioactive sources and background are used to generate the training dataset. Measurement data with varying source-to-detector distances, shielding thicknesses, and incidence angles are also taken into account. The experimental results show that the mean value of the accuracy can be achieved at about 98.8% and 94.9% for single- and multi-isotope identification, respectively. In addition, the model can well precisely recognize radionuclides in the gamma spectrum whose gain shift is up to 10%. The dependence of the true positive (TP) rate on the count quality factors of individual radionuclides, which was defined as the ratio between the net count rate and its associated uncertainty, is examined. The detection sensitivities, defined as the minimum count quality factor to obtain a TP rate of 95%, for 241 Am, 133 Ba, 137 Cs, 60 Co, 152 Eu, and $^{131}\text{I}$ are 8.90, 11.86, 8.96, 8.21, 12.54, and 11.89, respectively. With such encouraging results, the proposed model should be a useful technique for radionuclide recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu828完成签到,获得积分10
刚刚
喵哥233发布了新的文献求助10
1秒前
1秒前
深情安青应助虾米采纳,获得10
1秒前
mm发布了新的文献求助10
1秒前
多情寒珊发布了新的文献求助10
2秒前
Zfancy发布了新的文献求助10
3秒前
wyt完成签到,获得积分10
3秒前
3秒前
武雨寒发布了新的文献求助10
4秒前
4秒前
Robinson发布了新的文献求助10
5秒前
华仔应助孙婉莹采纳,获得10
5秒前
6秒前
6秒前
cctv18应助如梦如幻91采纳,获得30
7秒前
SWUTZJ完成签到,获得积分10
7秒前
ZHANG_Kun发布了新的文献求助10
7秒前
甜甜晓露完成签到 ,获得积分10
7秒前
7秒前
天天哥哥完成签到 ,获得积分10
7秒前
可爱的函函应助ziyiziyi采纳,获得10
8秒前
迅速的冬日完成签到,获得积分10
9秒前
tczw667完成签到,获得积分10
10秒前
Leeeee完成签到,获得积分10
10秒前
11秒前
12秒前
在水一方应助健康的绮南采纳,获得10
12秒前
13秒前
田様应助Zfancy采纳,获得10
13秒前
SciGPT应助mm采纳,获得10
14秒前
范先生发布了新的文献求助10
14秒前
14秒前
14秒前
萝卜完成签到,获得积分10
15秒前
专注的如松完成签到,获得积分10
15秒前
15秒前
krkr发布了新的文献求助10
16秒前
拉蒙达发布了新的文献求助10
16秒前
虾米发布了新的文献求助10
16秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071903
求助须知:如何正确求助?哪些是违规求助? 2725788
关于积分的说明 7491264
捐赠科研通 2373147
什么是DOI,文献DOI怎么找? 1258476
科研通“疑难数据库(出版商)”最低求助积分说明 610277
版权声明 596944