Nuclide Identification Algorithm for the Large-Size Plastic Detectors Based on Artificial Neural Network

算法 人工智能 计算机科学 物理
作者
Cao Van Hiep,Tien Hung Dinh,Nguyen Ngoc Anh,Nguyen Ninh Giang,Pham Dinh Khang,Nguyễn Xuân Hải,Nguyen Ninh Giang,Tien Hung Dinh,Van Chuan Phan
出处
期刊:IEEE Transactions on Nuclear Science [Institute of Electrical and Electronics Engineers]
卷期号:69 (6): 1203-1211 被引量:7
标识
DOI:10.1109/tns.2022.3173371
摘要

This article proposes a multi-label classification model using an artificial neural network (ANN) to identify both an individual and a mixture of radionuclides in gamma spectra obtained from a $250\times 250\times 50$ -mm 3 EJ-200 plastic scintillation detector. This model is evaluated under the scenario applied to pedestrian radiation portal monitors (RPMs) to judge how well it works in practice. The simulated and measured gamma of 241 Am, 133 Ba, 137 Cs, 60 Co, 152 Eu, and $^{131}\text{I}$ radioactive sources and background are used to generate the training dataset. Measurement data with varying source-to-detector distances, shielding thicknesses, and incidence angles are also taken into account. The experimental results show that the mean value of the accuracy can be achieved at about 98.8% and 94.9% for single- and multi-isotope identification, respectively. In addition, the model can well precisely recognize radionuclides in the gamma spectrum whose gain shift is up to 10%. The dependence of the true positive (TP) rate on the count quality factors of individual radionuclides, which was defined as the ratio between the net count rate and its associated uncertainty, is examined. The detection sensitivities, defined as the minimum count quality factor to obtain a TP rate of 95%, for 241 Am, 133 Ba, 137 Cs, 60 Co, 152 Eu, and $^{131}\text{I}$ are 8.90, 11.86, 8.96, 8.21, 12.54, and 11.89, respectively. With such encouraging results, the proposed model should be a useful technique for radionuclide recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yana发布了新的文献求助20
刚刚
yijiubingshi完成签到,获得积分10
1秒前
苏南完成签到 ,获得积分10
1秒前
冰激凌UP发布了新的文献求助10
1秒前
SCI发布了新的文献求助10
1秒前
CD发布了新的文献求助10
1秒前
2秒前
yan123发布了新的文献求助10
3秒前
3秒前
充电宝应助yyj采纳,获得10
3秒前
马静雨发布了新的文献求助10
3秒前
云游归尘发布了新的文献求助10
4秒前
5秒前
111发布了新的文献求助10
5秒前
寰宇完成签到,获得积分10
5秒前
5秒前
6秒前
花田雨桐发布了新的文献求助10
6秒前
6秒前
小马甲应助lieditongxu采纳,获得10
6秒前
Jenny应助yan123采纳,获得10
7秒前
狂野的以珊完成签到,获得积分10
7秒前
7秒前
a1oft发布了新的文献求助10
8秒前
8秒前
8秒前
笨笨的不斜完成签到,获得积分10
8秒前
xtqgyy发布了新的文献求助10
8秒前
9秒前
Cat完成签到,获得积分0
9秒前
科研小菜完成签到,获得积分10
10秒前
江南烟雨如笙完成签到,获得积分10
10秒前
10秒前
stt关闭了stt文献求助
10秒前
11秒前
yangang发布了新的文献求助10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
zhui发布了新的文献求助10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794