Fuzzy Markov Decision-Making Model for Interference Effects

模糊集 模糊逻辑 模糊数 数学 计算机科学 人工智能 2型模糊集与系统 马尔可夫链 马尔可夫过程 去模糊化 数学优化 数据挖掘 机器学习 统计
作者
Xiaozhuan Gao,Lipeng Pan,Danilo Pelusi,Yong Deng
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (1): 199-212 被引量:7
标识
DOI:10.1109/tfuzz.2022.3184784
摘要

The law of total probability plays an essential role in Bayesian reasoning, which has been used in many fields. However, some experiments show the law of total probability can be violated. In recent years, researchers have tried to explain this paradox with the interference effect in quantum theory, and they think the main reason for interference effects is the uncertain information in the decision-making process. Therefore, how to effectively model and process the uncertain information in the decision-making process is very important to understand and predict the interference effects. Zadeh proposed the fuzzy set by considering the fuzziness of information. Later, Atanassov proposed the intuitionistic fuzzy sets (IFS). IFS better describes the fuzzy information from the view of membership, nonmembership than fuzzy sets, which can also more flexibly simulate human decision making. Hence, the article proposed the fuzzy Markov decision-making model (FDM) under the framework of IFS to explain and predict the interference effects of decision-making process. In FDM, intuitionistic fuzzy number can be generated by using the negation operation of probability. In addition, the transition matrix can be obtained by using the Kolmogorov equation, which can consider the evolution time in the decision-making process. The transition matrix establishes the relationship between different stages to get the fuzzy numbers of final states. Finally, the article used the Dempster–Shafer evidence theory to transform fuzzy number into the probability. In summary, the proposed FDM can provide a novel idea to explore and explain the interference effects in the decision-making process, which is helpful to promote the development of artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助彩色的严青采纳,获得10
1秒前
李爱国应助博修采纳,获得10
1秒前
醉熏的伊完成签到,获得积分10
3秒前
xiaozhuzhu完成签到,获得积分10
3秒前
YOLO发布了新的文献求助10
3秒前
在水一方应助风中鹤采纳,获得10
4秒前
Thousands完成签到,获得积分10
4秒前
7秒前
社会主义接班人完成签到,获得积分10
10秒前
10秒前
李嘉发布了新的文献求助10
11秒前
11秒前
佳佳应助缥缈海云采纳,获得10
12秒前
zzz发布了新的文献求助10
13秒前
Akim应助gean采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
15秒前
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
QDU应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
kyo完成签到,获得积分10
15秒前
知许解夏应助科研通管家采纳,获得10
16秒前
萧水白应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
彭于彦祖应助科研通管家采纳,获得30
16秒前
QDU应助科研通管家采纳,获得10
16秒前
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
ED应助科研通管家采纳,获得20
16秒前
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388