A novel random multi-subspace based ReliefF for feature selection

特征选择 线性子空间 计算机科学 模式识别(心理学) 子空间拓扑 特征(语言学) 维数之咒 降维 特征向量 人工智能 预处理器 k-最近邻算法 重量 随机子空间法 数据挖掘 数学 语言学 李代数 哲学 纯数学 几何学
作者
Baoshuang Zhang,Yanying Li,Zheng Chai
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:252: 109400-109400 被引量:26
标识
DOI:10.1016/j.knosys.2022.109400
摘要

Feature selection is an important preprocessing technology for dimensionality reduction, which reduces the dimension of the dataset by acquiring a subset of features with the largest amount of information, and improves the classification accuracy to the greatest extent at the same time. Although different types of feature selection algorithms have achieved remarkable success, most of them lack the ability to mine information in different subspaces, and ignore the useful information contained in the abundant samples. In this research, a novel random multi-subspace based ReliefF (RBEFF) is proposed for feature selection. In this method, firstly, multiple feature partitions containing a large number of random subspaces with the same size are generated. Secondly, the ReliefF algorithm is used in each random subspace to obtain the local weight of the feature. The local weight vectors of random subspaces in each feature partition are combined to obtain the full weight vector. Finally, the full weight vectors of multiple feature partitions are integrated into the final weight vector, which contains the final weight of each feature in the original feature space feature. The feature selection is carried out dynamically according to the final weight vector. We evaluated the performance of the RBEFF on 28 UCI datasets with different sizes and compare RBEFF with 6 feature selection algorithms using KNN and DT classifiers’ three evaluation indicators. The comparisons and experimental results demonstrate the effectiveness, competitiveness, and superiority of RBEFF in solving feature selection problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
果果发布了新的文献求助10
1秒前
脑洞疼应助缥缈的龙猫采纳,获得10
3秒前
5秒前
祁瓀完成签到 ,获得积分10
7秒前
Yancent应助开朗台灯采纳,获得10
9秒前
11秒前
深情安青应助复杂惜萱采纳,获得10
12秒前
果果完成签到,获得积分10
13秒前
16秒前
21秒前
24秒前
24秒前
水心完成签到,获得积分10
27秒前
彩虹马发布了新的文献求助10
28秒前
英俊的铭应助龙猪采纳,获得10
28秒前
缥缈的龙猫完成签到,获得积分10
29秒前
学不完了发布了新的文献求助10
30秒前
iVANPENNY应助kalah采纳,获得10
30秒前
rosalieshi应助欣欣然采纳,获得30
30秒前
31秒前
CC完成签到,获得积分10
35秒前
复杂惜萱发布了新的文献求助10
35秒前
36秒前
36秒前
彩虹马完成签到,获得积分10
38秒前
Orange应助霸气夏旋采纳,获得10
38秒前
39秒前
41秒前
Lucas应助小孙采纳,获得10
42秒前
43秒前
各位大牛帮帮忙完成签到 ,获得积分10
44秒前
时舒完成签到 ,获得积分10
45秒前
陈陈发布了新的文献求助10
46秒前
48秒前
50秒前
喝酸奶的艾鑫完成签到 ,获得积分10
51秒前
52秒前
anan完成签到 ,获得积分10
53秒前
所所应助KaMoria采纳,获得40
53秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313702
求助须知:如何正确求助?哪些是违规求助? 2945997
关于积分的说明 8527826
捐赠科研通 2621588
什么是DOI,文献DOI怎么找? 1433925
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650648