Cultural and Creative Product Design and Image Recognition Based on Deep Learning

人工智能 计算机科学 深度学习 产品(数学) 机器学习 软件 机器视觉 数学 几何学 程序设计语言
作者
Ren Li,Chunbin Wang
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-9 被引量:5
标识
DOI:10.1155/2022/7256584
摘要

In today's technological world, advanced intelligence technologies such as deep learning (DL) techniques are widely applied in various fields. In this study, people are going to research cultural and creative product design and image recognition based on deep learning. Cultural creative products are referred to as products that are designed by taking inspiration from the cultural aspects. The use of cultural and creative products has increased among the people, thus creating a fair market. Artificial intelligence deep learning (DL) is employed for the design of culturally creative objects. Deep learning is referred to as a machine learning technique that is used to teach machines to imitate human behaviour so that computers can learn from examples. The proposed system utilizes image recognition technique which is referred as the ability of computer systems to identify objects from an image. The image recognition technique integrates machine vision technology, which uses cameras and artificial intelligent software for recognising images. This technology is widely used for various functions, such as self-driven cars, image content searches, and machine vision robots. In our proposed system, image recognition based on deep learning is used in the design of cultural and creative products through the utilisation of randomized algorithms. The system is found to deliver more accurate solutions when compared with the existing LDA, HMM, and optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助alooof采纳,获得30
2秒前
3秒前
3秒前
4秒前
小蘑菇应助别抢我辣条采纳,获得10
4秒前
6秒前
yxx完成签到,获得积分10
8秒前
Josh发布了新的文献求助10
8秒前
包容的含羞草完成签到,获得积分10
10秒前
wyj完成签到,获得积分10
10秒前
小杰完成签到,获得积分10
10秒前
King发布了新的文献求助10
10秒前
11秒前
huhu发布了新的文献求助10
11秒前
小样完成签到,获得积分10
11秒前
CodeCraft应助十三号失眠采纳,获得10
12秒前
别抢我辣条完成签到,获得积分20
12秒前
uuu发布了新的文献求助10
13秒前
自觉紫安完成签到 ,获得积分10
14秒前
14秒前
17秒前
NexusExplorer应助Ulrica采纳,获得10
18秒前
18秒前
光亮芷天完成签到,获得积分10
18秒前
20秒前
沉迷学习完成签到,获得积分10
21秒前
Becky发布了新的文献求助10
21秒前
科研通AI2S应助敢超采纳,获得10
23秒前
隐形曼青应助张杰列夫采纳,获得10
23秒前
23秒前
情怀应助huhu采纳,获得10
24秒前
我笑着童年完成签到,获得积分10
25秒前
25秒前
朴实曼冬发布了新的文献求助10
26秒前
StevenXiong发布了新的文献求助10
26秒前
高高的茹妖完成签到,获得积分10
27秒前
关我屁事完成签到 ,获得积分10
27秒前
诚心的焱完成签到,获得积分10
29秒前
29秒前
害羞的煎蛋完成签到,获得积分10
29秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138196
求助须知:如何正确求助?哪些是违规求助? 2789101
关于积分的说明 7790287
捐赠科研通 2445509
什么是DOI,文献DOI怎么找? 1300476
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046