Translution-SNet: A Semisupervised Hyperspectral Image Stripe Noise Removal Based on Transformer and CNN

高光谱成像 计算机科学 稳健性(进化) 人工智能 模式识别(心理学) 噪音(视频) 高斯噪声 降噪 特征提取 变压器 一般化 计算机视觉 遥感 图像(数学) 数学 地质学 工程类 数学分析 电气工程 基因 生物化学 电压 化学
作者
Chengjun Wang,Miaozhong Xu,Yonghua Jiang,Guo Zhang,Hao Cui,Litao Li,Da Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:28
标识
DOI:10.1109/tgrs.2022.3182745
摘要

Hyperspectral remote sensing images (HSIs) have been applied in urban planning, environmental monitoring, and other fields. However, they are susceptible to noise interference, such as Gaussian noise, stripe, and mixed noises, from various factors in the imaging process, which greatly limits their applications. Although previous efforts to improve HSI quality have achieved remarkable results, there are still many challenges to be solved. To avoid the poor generalization ability and improve the stripe removal performance of the network in real scenarios. In this paper, we proposed a novel deep learning model (Translution-SNet) for HSI stripe noise removal based on a semi-supervised training strategy that applies a convolution and transformer for feature extraction. Moreover, we used an unbiased estimation method to calculate the loss function of the unsupervised part from noisy data without a clean image. The semi-supervised method improved the ability of Translution-SNet to deal with various complex stripe noises during stripe removal and strengthened its robustness and generalization ability. Our experimental results showed that Translution-SNet could robustly handle stripe noise of images with different loads and achieve satisfactory results, proving its feasibility and effectiveness. In addition, Translution-SNet showed good generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萤火之森给萤火之森的求助进行了留言
刚刚
飘飘完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
3秒前
灵巧的大开完成签到,获得积分10
4秒前
HHHSean发布了新的文献求助10
5秒前
zxd1999完成签到,获得积分10
5秒前
木易心完成签到,获得积分10
6秒前
香蕉觅云应助ernest采纳,获得30
6秒前
852应助坚定的语芙采纳,获得10
8秒前
9秒前
9秒前
10秒前
npknpk发布了新的文献求助10
10秒前
10秒前
端庄的煎蛋完成签到,获得积分0
11秒前
12秒前
陈泽宇发布了新的文献求助10
12秒前
瀚泛完成签到,获得积分10
12秒前
13秒前
13秒前
wuliumu发布了新的文献求助10
13秒前
鳗鱼飞船发布了新的文献求助10
14秒前
顺顺新悦发布了新的文献求助10
14秒前
14秒前
李健的小迷弟应助陈大海采纳,获得10
15秒前
15秒前
哭泣乌完成签到,获得积分10
16秒前
16秒前
大模型应助Yoo采纳,获得10
16秒前
daisies应助CHB只争朝夕采纳,获得20
17秒前
现代的访曼应助哈哈哈采纳,获得20
17秒前
Jennyylz发布了新的文献求助10
18秒前
口天吴发布了新的文献求助10
18秒前
19秒前
Han发布了新的文献求助10
20秒前
22发布了新的文献求助10
22秒前
鳗鱼飞船完成签到,获得积分10
22秒前
23秒前
李爱国应助幸运的羔羊采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959482
求助须知:如何正确求助?哪些是违规求助? 3505709
关于积分的说明 11125517
捐赠科研通 3237592
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802868