已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accurate prediction of concrete compressive strength based on explainable features using deep learning

抗压强度 计算机科学 卷积神经网络 一般化 集合(抽象数据类型) 人工智能 机器学习 人工神经网络 可靠性(半导体) 试验装置 试验数据 先验与后验 数学 材料科学 数学分析 功率(物理) 哲学 物理 认识论 量子力学 复合材料 程序设计语言
作者
Ziyue Zeng,Zheyu Zhu,Wu Yao,Zhongping Wang,Changying Wang,Yongqi Wei,Zhenhua Wei,Xingquan Guan
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:329: 127082-127082 被引量:62
标识
DOI:10.1016/j.conbuildmat.2022.127082
摘要

Recently, a number of machine-learning models have been proposed for the prediction of 28-day compressive strength of concrete using constituent material information as inputs. These models required a series of unexplainable features to be pre-proportioned and predetermined via experiments. Therefore, the a priori knowledge and experience of concrete engineers in terms of concrete formulation and proportioning are unfortunately neglected and wasted in this prediction logic, which might lead to serious predictive errors in concrete design and construction. In this study, a deep-learning based “factors-to-strength” approach that considers multiple explainable features and therefore takes advantage of existing job-site proportioning information is presented for concrete strength prediction. A deep convolutional neural network is proposed and trained using a data set consisting of 380 groups of concrete mixes. The accuracy and reliability of the model are validated by comparing with three models – SVM, ANN, and AdaBoost – using a data set prepared experimentally. The results show that the proposed model achieves high coefficients of determination (0.973 for the training set and 0.967 for the test set), demonstrating its excellent accuracy and generalization ability. This new model also reveals the interplay between varying explainable features in determining the compressive strength of concrete, hence facilitating an interactive experience for engineers to maneuver familiar and understandable factors for concrete strength design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北国完成签到,获得积分20
3秒前
5秒前
量子星尘发布了新的文献求助10
8秒前
戴哈哈发布了新的文献求助10
10秒前
有魅力书雪完成签到,获得积分10
10秒前
叫我魔王大人完成签到,获得积分10
12秒前
情怀应助戴哈哈采纳,获得10
14秒前
tpsdxq发布了新的文献求助10
18秒前
SciGPT应助midokaori采纳,获得10
18秒前
盛夏完成签到,获得积分10
19秒前
思源应助sxt采纳,获得10
20秒前
简明发布了新的文献求助10
21秒前
爱读文献完成签到 ,获得积分10
22秒前
Emon完成签到,获得积分10
23秒前
25秒前
27秒前
柴郡喵完成签到,获得积分10
29秒前
32秒前
Feipeng完成签到,获得积分10
32秒前
grace发布了新的文献求助20
36秒前
李健的小迷弟应助阿九采纳,获得10
37秒前
天天快乐应助自由的未来采纳,获得10
38秒前
爆米花应助Feipeng采纳,获得10
39秒前
潇洒绿蕊完成签到,获得积分10
40秒前
简明完成签到,获得积分10
41秒前
冷傲的魂幽完成签到 ,获得积分10
41秒前
43秒前
归海梦岚完成签到,获得积分0
44秒前
祈雨的鲸鱼完成签到,获得积分10
46秒前
zbx完成签到,获得积分10
52秒前
搜集达人应助陈哈哈采纳,获得10
54秒前
54秒前
kkpzc完成签到 ,获得积分10
54秒前
跳跃的曼寒完成签到,获得积分10
55秒前
57秒前
1分钟前
1分钟前
搜集达人应助科研1采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210