Traversal index enhanced-gram (TIEgram): A novel optimal demodulation frequency band selection method for rolling bearing fault diagnosis under non-stationary operating conditions

树遍历 方位(导航) 计算机科学 解调 振动 断层(地质) 频域 频带 人工智能 模式识别(心理学) 算法 声学 计算机视觉 电信 带宽(计算) 频道(广播) 物理 地震学 地质学
作者
Xinglong Wang,Jinde Zheng,Qing Ni,Haiyang Pan,Jun Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:172: 109017-109017 被引量:68
标识
DOI:10.1016/j.ymssp.2022.109017
摘要

• The traversal index enhanced-gram (TIEgram) is proposed for rolling bearing fault diagnosis. • In TIEgram a new fusion indicator is developed to measure the different fault characteristics of rolling bearing. • An enhanced envelope spectrum is proposed to improve the accuracy of fault characteristic frequency detection. • The effectiveness and superiority of TIEgram is verified by simulated and measured data under different work conditions. It is very important to select the optimal demodulation frequency band (ODFB) of rolling bearing vibration signals for the most valuable fault information extraction and diagnosis. Fast kurtogram (FK) is an effective and most commonly used ODFB selection approach for bearing fault diagnosis, which generally is founded on the filter bank structure and short-time Fourier transform. Though the FK method can effectively detect the shock characteristics of frequency band signals, other useful characteristics related with failure of vibration signal will be ignored. In this paper, a novel ODFB selection method called traversal index enhanced-gram (TIEgram) is proposed for rolling bearing vibration signals. In the proposed TIEgram method, first of all, the traversal segmentation model is utilized to transfer the original signal into frequency domain for enhancing overall segmentation performance of traditional binary trees and 1/3 binary trees structure segmentation models. Then, a new weighted fusion indicator based on the kurtosis, correlation coefficient and spectral negative entropy is designed to select ODFB from the segmented results of traversal segmentation model, which can effectively solve the problem that different vibration signal characteristics cannot be fully detected by a single indicator. After that, an enhanced adaptive multi-scale weighted morphological filtering-based envelope spectrum is employed to demodulate the obtained frequency band for a much more accurate diagnosis effect of rolling bearing. Finally, the simulated and measured signals of rolling bearing under stationary and non-stationary operating conditions are respectively used to verify the feasibility and effectiveness of the proposed method with comparison of the existing FK, Autogram and infogram methods. The comparison analysis results show that TIEgram method can accurately identify the most useful fault information and shows better performance than existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思源应助多余采纳,获得10
1秒前
YAN完成签到 ,获得积分10
3秒前
xinL完成签到,获得积分10
3秒前
wujingshuai完成签到,获得积分10
4秒前
月光光完成签到,获得积分10
6秒前
成就若颜完成签到,获得积分10
6秒前
7秒前
典雅浩轩完成签到,获得积分10
7秒前
夏雪儿完成签到,获得积分10
7秒前
n0way完成签到,获得积分10
11秒前
ShawnJohn完成签到,获得积分10
12秒前
Scheduling完成签到 ,获得积分10
13秒前
万能图书馆应助aikeyan采纳,获得10
13秒前
SaSa发布了新的文献求助20
14秒前
孤独丹秋完成签到,获得积分10
14秒前
林夏完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
hhhhhha完成签到,获得积分10
15秒前
虚幻的香彤完成签到,获得积分10
15秒前
hitzwd完成签到,获得积分10
16秒前
能干戎完成签到,获得积分10
16秒前
赘婿应助平平宁采纳,获得10
17秒前
杨鑫萍完成签到 ,获得积分10
18秒前
彭于晏应助依紫采纳,获得10
19秒前
香蕉觅云应助kong采纳,获得10
19秒前
Loooong发布了新的文献求助10
20秒前
小红完成签到,获得积分10
21秒前
BLAZe完成签到 ,获得积分10
23秒前
赫尔坤兰完成签到 ,获得积分10
23秒前
酷炫凡完成签到 ,获得积分10
25秒前
闫佳美发布了新的文献求助20
26秒前
热心不凡完成签到,获得积分10
26秒前
lllllsy完成签到 ,获得积分10
26秒前
28秒前
依紫完成签到,获得积分10
28秒前
一只大憨憨猫完成签到,获得积分10
28秒前
会撒娇的乌冬面完成签到 ,获得积分10
28秒前
平平宁完成签到,获得积分10
28秒前
耍酷寻双完成签到 ,获得积分0
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645160
求助须知:如何正确求助?哪些是违规求助? 4767911
关于积分的说明 15026597
捐赠科研通 4803591
什么是DOI,文献DOI怎么找? 2568393
邀请新用户注册赠送积分活动 1525717
关于科研通互助平台的介绍 1485369