Traversal index enhanced-gram (TIEgram): A novel optimal demodulation frequency band selection method for rolling bearing fault diagnosis under non-stationary operating conditions

树遍历 方位(导航) 计算机科学 解调 振动 断层(地质) 频域 频带 人工智能 模式识别(心理学) 算法 声学 计算机视觉 电信 带宽(计算) 频道(广播) 物理 地震学 地质学
作者
Xinglong Wang,Jinde Zheng,Qing Ni,Haiyang Pan,Jun Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:172: 109017-109017 被引量:68
标识
DOI:10.1016/j.ymssp.2022.109017
摘要

• The traversal index enhanced-gram (TIEgram) is proposed for rolling bearing fault diagnosis. • In TIEgram a new fusion indicator is developed to measure the different fault characteristics of rolling bearing. • An enhanced envelope spectrum is proposed to improve the accuracy of fault characteristic frequency detection. • The effectiveness and superiority of TIEgram is verified by simulated and measured data under different work conditions. It is very important to select the optimal demodulation frequency band (ODFB) of rolling bearing vibration signals for the most valuable fault information extraction and diagnosis. Fast kurtogram (FK) is an effective and most commonly used ODFB selection approach for bearing fault diagnosis, which generally is founded on the filter bank structure and short-time Fourier transform. Though the FK method can effectively detect the shock characteristics of frequency band signals, other useful characteristics related with failure of vibration signal will be ignored. In this paper, a novel ODFB selection method called traversal index enhanced-gram (TIEgram) is proposed for rolling bearing vibration signals. In the proposed TIEgram method, first of all, the traversal segmentation model is utilized to transfer the original signal into frequency domain for enhancing overall segmentation performance of traditional binary trees and 1/3 binary trees structure segmentation models. Then, a new weighted fusion indicator based on the kurtosis, correlation coefficient and spectral negative entropy is designed to select ODFB from the segmented results of traversal segmentation model, which can effectively solve the problem that different vibration signal characteristics cannot be fully detected by a single indicator. After that, an enhanced adaptive multi-scale weighted morphological filtering-based envelope spectrum is employed to demodulate the obtained frequency band for a much more accurate diagnosis effect of rolling bearing. Finally, the simulated and measured signals of rolling bearing under stationary and non-stationary operating conditions are respectively used to verify the feasibility and effectiveness of the proposed method with comparison of the existing FK, Autogram and infogram methods. The comparison analysis results show that TIEgram method can accurately identify the most useful fault information and shows better performance than existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力的香芦完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
轨迹应助77采纳,获得20
6秒前
Tbin完成签到,获得积分10
6秒前
gulin完成签到,获得积分10
7秒前
huahua完成签到 ,获得积分10
8秒前
研友_VZGVzn完成签到,获得积分10
14秒前
随随完成签到 ,获得积分10
15秒前
zouni完成签到,获得积分10
17秒前
九月完成签到,获得积分10
17秒前
不秃燃的小老弟完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
Sandy发布了新的文献求助10
22秒前
23秒前
张晨完成签到 ,获得积分10
23秒前
Clifton完成签到 ,获得积分10
24秒前
邓大瓜完成签到,获得积分10
24秒前
Asumita完成签到,获得积分10
24秒前
27秒前
DrPika完成签到,获得积分10
29秒前
efengmo完成签到,获得积分10
31秒前
Vegeta完成签到 ,获得积分10
33秒前
冷酷夏真完成签到 ,获得积分10
35秒前
Akim应助历史真相采纳,获得10
36秒前
小事完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
犹豫的雨柏完成签到,获得积分10
39秒前
GXW完成签到,获得积分10
39秒前
Qian完成签到,获得积分10
40秒前
40秒前
11完成签到,获得积分10
42秒前
Astra完成签到,获得积分10
43秒前
害怕的冰颜完成签到 ,获得积分10
45秒前
都都完成签到 ,获得积分10
47秒前
Loey完成签到,获得积分10
47秒前
wuju完成签到,获得积分10
49秒前
50秒前
spicyfish完成签到,获得积分10
51秒前
勤奋的花卷完成签到 ,获得积分10
51秒前
HopeLee完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839