Traversal index enhanced-gram (TIEgram): A novel optimal demodulation frequency band selection method for rolling bearing fault diagnosis under non-stationary operating conditions

树遍历 方位(导航) 计算机科学 解调 振动 断层(地质) 频域 频带 人工智能 模式识别(心理学) 算法 声学 计算机视觉 电信 带宽(计算) 频道(广播) 物理 地震学 地质学
作者
Xinglong Wang,Jinde Zheng,Qing Ni,Haiyang Pan,Jun Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:172: 109017-109017 被引量:68
标识
DOI:10.1016/j.ymssp.2022.109017
摘要

• The traversal index enhanced-gram (TIEgram) is proposed for rolling bearing fault diagnosis. • In TIEgram a new fusion indicator is developed to measure the different fault characteristics of rolling bearing. • An enhanced envelope spectrum is proposed to improve the accuracy of fault characteristic frequency detection. • The effectiveness and superiority of TIEgram is verified by simulated and measured data under different work conditions. It is very important to select the optimal demodulation frequency band (ODFB) of rolling bearing vibration signals for the most valuable fault information extraction and diagnosis. Fast kurtogram (FK) is an effective and most commonly used ODFB selection approach for bearing fault diagnosis, which generally is founded on the filter bank structure and short-time Fourier transform. Though the FK method can effectively detect the shock characteristics of frequency band signals, other useful characteristics related with failure of vibration signal will be ignored. In this paper, a novel ODFB selection method called traversal index enhanced-gram (TIEgram) is proposed for rolling bearing vibration signals. In the proposed TIEgram method, first of all, the traversal segmentation model is utilized to transfer the original signal into frequency domain for enhancing overall segmentation performance of traditional binary trees and 1/3 binary trees structure segmentation models. Then, a new weighted fusion indicator based on the kurtosis, correlation coefficient and spectral negative entropy is designed to select ODFB from the segmented results of traversal segmentation model, which can effectively solve the problem that different vibration signal characteristics cannot be fully detected by a single indicator. After that, an enhanced adaptive multi-scale weighted morphological filtering-based envelope spectrum is employed to demodulate the obtained frequency band for a much more accurate diagnosis effect of rolling bearing. Finally, the simulated and measured signals of rolling bearing under stationary and non-stationary operating conditions are respectively used to verify the feasibility and effectiveness of the proposed method with comparison of the existing FK, Autogram and infogram methods. The comparison analysis results show that TIEgram method can accurately identify the most useful fault information and shows better performance than existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
刚刚
上官若男应助TG采纳,获得10
1秒前
FashionBoy应助wlnhyF采纳,获得10
2秒前
10711发布了新的文献求助10
3秒前
wuuw发布了新的文献求助20
4秒前
5秒前
呈歌完成签到 ,获得积分10
5秒前
6秒前
6秒前
酸酸发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
虚拟的纸鹤完成签到 ,获得积分10
7秒前
万能图书馆应助10711采纳,获得10
8秒前
思源应助guan采纳,获得10
8秒前
8秒前
8秒前
乐观的小鸡完成签到,获得积分10
8秒前
9秒前
慧慧完成签到 ,获得积分10
9秒前
Jasper应助liu采纳,获得10
10秒前
大方岩完成签到,获得积分10
11秒前
岳元满完成签到,获得积分20
11秒前
超超发布了新的文献求助10
11秒前
廖喜林发布了新的文献求助10
11秒前
vvA11完成签到,获得积分10
12秒前
12秒前
12秒前
浅风完成签到,获得积分10
13秒前
TANG发布了新的文献求助20
13秒前
呆一起发布了新的文献求助10
14秒前
vvA11发布了新的文献求助10
14秒前
桔梗发布了新的文献求助10
14秒前
李健应助hubery采纳,获得10
16秒前
handsome发布了新的文献求助10
16秒前
爱意发布了新的文献求助10
17秒前
17秒前
威武白桃完成签到,获得积分10
18秒前
充电宝应助超超采纳,获得10
18秒前
19秒前
小明应助彩色的若南采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901