Traversal index enhanced-gram (TIEgram): A novel optimal demodulation frequency band selection method for rolling bearing fault diagnosis under non-stationary operating conditions

树遍历 方位(导航) 计算机科学 解调 振动 断层(地质) 频域 频带 人工智能 模式识别(心理学) 算法 声学 计算机视觉 电信 带宽(计算) 频道(广播) 物理 地震学 地质学
作者
Xinglong Wang,Jinde Zheng,Qing Ni,Haiyang Pan,Jun Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:172: 109017-109017 被引量:68
标识
DOI:10.1016/j.ymssp.2022.109017
摘要

• The traversal index enhanced-gram (TIEgram) is proposed for rolling bearing fault diagnosis. • In TIEgram a new fusion indicator is developed to measure the different fault characteristics of rolling bearing. • An enhanced envelope spectrum is proposed to improve the accuracy of fault characteristic frequency detection. • The effectiveness and superiority of TIEgram is verified by simulated and measured data under different work conditions. It is very important to select the optimal demodulation frequency band (ODFB) of rolling bearing vibration signals for the most valuable fault information extraction and diagnosis. Fast kurtogram (FK) is an effective and most commonly used ODFB selection approach for bearing fault diagnosis, which generally is founded on the filter bank structure and short-time Fourier transform. Though the FK method can effectively detect the shock characteristics of frequency band signals, other useful characteristics related with failure of vibration signal will be ignored. In this paper, a novel ODFB selection method called traversal index enhanced-gram (TIEgram) is proposed for rolling bearing vibration signals. In the proposed TIEgram method, first of all, the traversal segmentation model is utilized to transfer the original signal into frequency domain for enhancing overall segmentation performance of traditional binary trees and 1/3 binary trees structure segmentation models. Then, a new weighted fusion indicator based on the kurtosis, correlation coefficient and spectral negative entropy is designed to select ODFB from the segmented results of traversal segmentation model, which can effectively solve the problem that different vibration signal characteristics cannot be fully detected by a single indicator. After that, an enhanced adaptive multi-scale weighted morphological filtering-based envelope spectrum is employed to demodulate the obtained frequency band for a much more accurate diagnosis effect of rolling bearing. Finally, the simulated and measured signals of rolling bearing under stationary and non-stationary operating conditions are respectively used to verify the feasibility and effectiveness of the proposed method with comparison of the existing FK, Autogram and infogram methods. The comparison analysis results show that TIEgram method can accurately identify the most useful fault information and shows better performance than existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助Tsct采纳,获得10
刚刚
奶茶给我一口完成签到,获得积分10
刚刚
小胡同学完成签到,获得积分10
1秒前
1秒前
曹兰萍发布了新的文献求助10
1秒前
思源应助cdbb采纳,获得10
2秒前
2秒前
刘霁葳完成签到,获得积分10
2秒前
xiayu完成签到,获得积分10
2秒前
3秒前
xiaojing完成签到,获得积分10
3秒前
老迟到的定帮完成签到,获得积分10
3秒前
小汁儿发布了新的文献求助10
3秒前
暴躁的夏烟应助愉快广缘采纳,获得10
4秒前
Leon发布了新的文献求助10
4秒前
絵空事完成签到,获得积分10
5秒前
FashionBoy应助zm采纳,获得10
5秒前
梦汐moxi完成签到,获得积分20
5秒前
6秒前
hch完成签到,获得积分20
6秒前
6秒前
猪猪hero应助客服小祥采纳,获得10
6秒前
7秒前
7秒前
小蘑菇应助犹豫的世倌采纳,获得10
7秒前
倩倩完成签到 ,获得积分10
7秒前
7秒前
务实的以松完成签到,获得积分10
8秒前
大模型应助积极紫翠采纳,获得10
8秒前
梅竹发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
小可爱完成签到,获得积分10
9秒前
zhuang发布了新的文献求助30
9秒前
xiayu发布了新的文献求助20
9秒前
9秒前
10秒前
Akim应助酷炫翠柏采纳,获得30
10秒前
不倒翁发布了新的文献求助10
10秒前
shepherd应助假装有昵称采纳,获得20
10秒前
kpzwov完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624710
求助须知:如何正确求助?哪些是违规求助? 4710500
关于积分的说明 14951127
捐赠科研通 4778615
什么是DOI,文献DOI怎么找? 2553367
邀请新用户注册赠送积分活动 1515328
关于科研通互助平台的介绍 1475603