Deep Learning Classification of Spinal Osteoporotic Compression Fractures on Radiographs using an Adaptation of the Genant Semiquantitative Criteria

医学 骨质疏松症 射线照相术 接收机工作特性 曲线下面积 曲线下面积 骨质疏松性骨折 放射科 人工智能 内科学 计算机科学 骨矿物 药代动力学
作者
Qifei Dong,Gang Luo,Nancy E. Lane,Li‐Yung Lui,Lynn M. Marshall,Deborah M. Kado,Peggy M. Cawthon,Jessica Perry,Sandra K. Johnston,David R. Haynor,Jeffrey G. Jarvik,Nathan Cross
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (12): 1819-1832 被引量:25
标识
DOI:10.1016/j.acra.2022.02.020
摘要

Osteoporosis affects 9% of individuals over 50 in the United States and 200 million women globally. Spinal osteoporotic compression fractures (OCFs), an osteoporosis biomarker, are often incidental and under-reported. Accurate automated opportunistic OCF screening can increase the diagnosis rate and ensure adequate treatment. We aimed to develop a deep learning classifier for OCFs, a critical component of our future automated opportunistic screening tool.The dataset from the Osteoporotic Fractures in Men Study comprised 4461 subjects and 15,524 spine radiographs. This dataset was split by subject: 76.5% training, 8.5% validation, and 15% testing. From the radiographs, 100,409 vertebral bodies were extracted, each assigned one of two labels adapted from the Genant semiquantitative system: moderate to severe fracture vs. normal/trace/mild fracture. GoogLeNet, a deep learning model, was trained to classify the vertebral bodies. The classification threshold on the predicted probability of OCF outputted by GoogLeNet was set to prioritize the positive predictive value (PPV) while balancing it with the sensitivity. Vertebral bodies with the top 0.75% predicted probabilities were classified as moderate to severe fracture.Our model yielded a sensitivity of 59.8%, a PPV of 91.2%, and an F1 score of 0.72. The areas under the receiver operating characteristic curve (AUC-ROC) and the precision-recall curve were 0.99 and 0.82, respectively.Our model classified vertebral bodies with an AUC-ROC of 0.99, providing a critical component for our future automated opportunistic screening tool. This could lead to earlier detection and treatment of OCFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颜靖仇发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
隐形曼青应助文俊杰采纳,获得10
1秒前
2秒前
科研通AI5应助xiaoxiaoli采纳,获得10
2秒前
怕黑的路人完成签到,获得积分10
3秒前
如此纠结完成签到,获得积分10
3秒前
宗晓凡完成签到 ,获得积分10
4秒前
眼睛大天抒完成签到,获得积分20
4秒前
shengxai12e完成签到,获得积分10
4秒前
4秒前
吃口饭完成签到,获得积分20
4秒前
莉莉冰完成签到 ,获得积分10
5秒前
谨言发布了新的文献求助10
5秒前
yanzu应助开放的大侠采纳,获得10
6秒前
远方的大树给远方的大树的求助进行了留言
6秒前
o10发布了新的文献求助10
6秒前
7秒前
吃口饭发布了新的文献求助10
7秒前
传奇3应助虚心的以晴采纳,获得10
7秒前
7秒前
8秒前
文俊杰完成签到,获得积分10
8秒前
8秒前
魔幻冷霜完成签到,获得积分10
9秒前
9秒前
9秒前
TRY发布了新的文献求助10
9秒前
10秒前
RUSeries完成签到,获得积分10
11秒前
11秒前
snow发布了新的文献求助10
12秒前
一苇以航发布了新的文献求助10
12秒前
yellow完成签到,获得积分20
12秒前
草上飞李四完成签到,获得积分10
12秒前
张振宇完成签到 ,获得积分10
13秒前
yanzu应助卡乐瑞咩吹可采纳,获得20
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246