Using traffic flow characteristics to predict real-time conflict risk: A novel method for trajectory data analysis

计算机科学 梯度升压 支持向量机 机器学习 人工智能 数据挖掘 特征选择 随机森林 Boosting(机器学习) 多层感知器 毒物控制 人工神经网络 统计 数学 医学 环境卫生
作者
Yuan Chen,Ye Li,Helai Huang,Shiqi Wang,Zhenhao Sun,Yan Li
出处
期刊:Analytic Methods in Accident Research [Elsevier BV]
卷期号:35: 100217-100217 被引量:39
标识
DOI:10.1016/j.amar.2022.100217
摘要

The real-time conflict prediction model using traffic flow characteristics is much less studied than the crash-based model. This study aims at exploring the relationship between conflicts and traffic flow features with the consideration of heterogeneity and developing predictive models to identify conflict-prone conditions in a real-time manner. The high-resolution trajectory data from the HighD dataset is used as empirical data. A novel method with the virtual detector approach for traffic feature extraction and a two-step framework is proposed for the trajectory data analysis. The framework consists of an exploratory study by random parameter logit model with heterogeneity in means and variances and a comparative study on several machine learning methods, including eXtreme Gradient Boosting (Boosting), Random Forest (Bagging), Support Vector Machine (Single-classifier), and Multilayer-Perceptron (Deep neural network). Results indicate that (1) traffic flow characteristics have significant impacts on the probability of conflict occurrence; (2) the statistical model considering mean heterogeneity outperforms the counterpart and lane differences variables are found to significantly impact the means of random parameters for both lane variables and lane differences variables; (3) eXtreme Gradient Boosting trained on an under-sampled dataset turns out to be the best model with the highest AUC of 0.871 and precision of 0.867, showing that re-sampling techniques can significantly improve the model performance. The proposed model is found to be sensitive to the conflict threshold. Sensitivity analysis on feature selection further confirms that the conflict risk prediction should consider both subject lane features and lane difference features, which verifies the consistency with exploratory analysis based on the statistical model. The consistency between statistical models and machine learning methods improves the interpretability of results for the latter one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
科研通AI5应助cc采纳,获得10
1秒前
铜泰妍完成签到 ,获得积分10
2秒前
贝贝完成签到 ,获得积分10
7秒前
Lrcx完成签到 ,获得积分10
8秒前
Wen完成签到 ,获得积分10
9秒前
盘尼西林完成签到 ,获得积分10
11秒前
LOVE0077完成签到,获得积分10
14秒前
zhao完成签到,获得积分10
16秒前
BINBIN完成签到 ,获得积分10
26秒前
ambrose37完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
34秒前
fufufu123完成签到 ,获得积分10
38秒前
开心的大娘完成签到,获得积分10
38秒前
www完成签到 ,获得积分10
40秒前
末末完成签到 ,获得积分10
50秒前
无为完成签到 ,获得积分10
51秒前
白嫖论文完成签到 ,获得积分10
53秒前
上官若男应助忧伤的步美采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
59秒前
从心随缘完成签到 ,获得积分10
1分钟前
花花发布了新的文献求助10
1分钟前
牛奶面包完成签到 ,获得积分10
1分钟前
1分钟前
岁月如歌完成签到 ,获得积分0
1分钟前
1分钟前
Li完成签到,获得积分10
1分钟前
张琨完成签到 ,获得积分10
1分钟前
1分钟前
sunnyqqz完成签到,获得积分10
1分钟前
热情的乘风完成签到,获得积分20
1分钟前
1分钟前
霍凡白完成签到,获得积分10
1分钟前
1分钟前
Feng发布了新的文献求助20
1分钟前
怕孤单的若颜完成签到 ,获得积分10
1分钟前
1分钟前
ruochenzu发布了新的文献求助10
1分钟前
zhongu发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022