Using traffic flow characteristics to predict real-time conflict risk: A novel method for trajectory data analysis

计算机科学 梯度升压 支持向量机 机器学习 人工智能 数据挖掘 特征选择 随机森林 Boosting(机器学习) 多层感知器 毒物控制 人工神经网络 统计 数学 医学 环境卫生
作者
Yuan Chen,Ye Li,Helai Huang,Shiqi Wang,Zhenhao Sun,Yan Li
出处
期刊:Analytic Methods in Accident Research [Elsevier]
卷期号:35: 100217-100217 被引量:39
标识
DOI:10.1016/j.amar.2022.100217
摘要

The real-time conflict prediction model using traffic flow characteristics is much less studied than the crash-based model. This study aims at exploring the relationship between conflicts and traffic flow features with the consideration of heterogeneity and developing predictive models to identify conflict-prone conditions in a real-time manner. The high-resolution trajectory data from the HighD dataset is used as empirical data. A novel method with the virtual detector approach for traffic feature extraction and a two-step framework is proposed for the trajectory data analysis. The framework consists of an exploratory study by random parameter logit model with heterogeneity in means and variances and a comparative study on several machine learning methods, including eXtreme Gradient Boosting (Boosting), Random Forest (Bagging), Support Vector Machine (Single-classifier), and Multilayer-Perceptron (Deep neural network). Results indicate that (1) traffic flow characteristics have significant impacts on the probability of conflict occurrence; (2) the statistical model considering mean heterogeneity outperforms the counterpart and lane differences variables are found to significantly impact the means of random parameters for both lane variables and lane differences variables; (3) eXtreme Gradient Boosting trained on an under-sampled dataset turns out to be the best model with the highest AUC of 0.871 and precision of 0.867, showing that re-sampling techniques can significantly improve the model performance. The proposed model is found to be sensitive to the conflict threshold. Sensitivity analysis on feature selection further confirms that the conflict risk prediction should consider both subject lane features and lane difference features, which verifies the consistency with exploratory analysis based on the statistical model. The consistency between statistical models and machine learning methods improves the interpretability of results for the latter one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助鹿友绿采纳,获得10
1秒前
苍灵完成签到,获得积分10
1秒前
霸气的煜祺完成签到 ,获得积分10
2秒前
fei完成签到,获得积分10
2秒前
李龙波发布了新的文献求助10
4秒前
搜集达人应助cc采纳,获得10
5秒前
5秒前
Christian完成签到,获得积分10
7秒前
go完成签到,获得积分20
7秒前
hzc完成签到,获得积分0
7秒前
赘婿应助小葵ty采纳,获得10
8秒前
不争馒头争口气完成签到 ,获得积分10
9秒前
wang关注了科研通微信公众号
10秒前
12秒前
13秒前
爱静静应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
16秒前
sunshine应助科研通管家采纳,获得10
16秒前
爱静静应助科研通管家采纳,获得20
16秒前
爱静静应助科研通管家采纳,获得10
16秒前
爱静静应助科研通管家采纳,获得10
16秒前
clyxb完成签到,获得积分10
16秒前
爱静静应助科研通管家采纳,获得10
16秒前
sunshine应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
FAN完成签到,获得积分10
17秒前
Zzan完成签到 ,获得积分10
17秒前
赘婿应助Dskelf采纳,获得10
18秒前
18秒前
19秒前
20秒前
psylin发布了新的文献求助10
23秒前
媛小媛啊发布了新的文献求助10
24秒前
小熊猫应助Wang采纳,获得20
25秒前
完美世界应助无语的又夏采纳,获得10
26秒前
开口笑的大菠萝完成签到,获得积分20
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260879
求助须知:如何正确求助?哪些是违规求助? 2901937
关于积分的说明 8318293
捐赠科研通 2571697
什么是DOI,文献DOI怎么找? 1397202
科研通“疑难数据库(出版商)”最低求助积分说明 653684
邀请新用户注册赠送积分活动 632213