Using traffic flow characteristics to predict real-time conflict risk: A novel method for trajectory data analysis

计算机科学 梯度升压 支持向量机 机器学习 人工智能 数据挖掘 特征选择 随机森林 Boosting(机器学习) 多层感知器 毒物控制 人工神经网络 统计 数学 医学 环境卫生
作者
Yuan Chen,Ye Li,Helai Huang,Shiqi Wang,Zhenhao Sun,Yan Li
出处
期刊:Analytic Methods in Accident Research [Elsevier BV]
卷期号:35: 100217-100217 被引量:39
标识
DOI:10.1016/j.amar.2022.100217
摘要

The real-time conflict prediction model using traffic flow characteristics is much less studied than the crash-based model. This study aims at exploring the relationship between conflicts and traffic flow features with the consideration of heterogeneity and developing predictive models to identify conflict-prone conditions in a real-time manner. The high-resolution trajectory data from the HighD dataset is used as empirical data. A novel method with the virtual detector approach for traffic feature extraction and a two-step framework is proposed for the trajectory data analysis. The framework consists of an exploratory study by random parameter logit model with heterogeneity in means and variances and a comparative study on several machine learning methods, including eXtreme Gradient Boosting (Boosting), Random Forest (Bagging), Support Vector Machine (Single-classifier), and Multilayer-Perceptron (Deep neural network). Results indicate that (1) traffic flow characteristics have significant impacts on the probability of conflict occurrence; (2) the statistical model considering mean heterogeneity outperforms the counterpart and lane differences variables are found to significantly impact the means of random parameters for both lane variables and lane differences variables; (3) eXtreme Gradient Boosting trained on an under-sampled dataset turns out to be the best model with the highest AUC of 0.871 and precision of 0.867, showing that re-sampling techniques can significantly improve the model performance. The proposed model is found to be sensitive to the conflict threshold. Sensitivity analysis on feature selection further confirms that the conflict risk prediction should consider both subject lane features and lane difference features, which verifies the consistency with exploratory analysis based on the statistical model. The consistency between statistical models and machine learning methods improves the interpretability of results for the latter one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快的新波完成签到,获得积分10
刚刚
2秒前
2秒前
2秒前
2秒前
完美世界应助zlttt采纳,获得10
4秒前
momo发布了新的文献求助10
6秒前
漫山完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
阿斗发布了新的文献求助10
10秒前
10秒前
踏实的火龙果完成签到 ,获得积分20
10秒前
健忘白完成签到,获得积分10
12秒前
ding应助liang采纳,获得30
13秒前
厉害tt完成签到,获得积分10
13秒前
13秒前
ding应助momo采纳,获得10
13秒前
在水一方应助吧啦吧啦采纳,获得10
13秒前
踏实的火龙果关注了科研通微信公众号
14秒前
维尼发布了新的文献求助20
15秒前
文档发布了新的文献求助10
15秒前
Rondab应助千余采纳,获得10
19秒前
19秒前
taowang发布了新的文献求助30
19秒前
一支笔画天下完成签到 ,获得积分10
19秒前
20秒前
CL完成签到 ,获得积分10
21秒前
hnlgdx完成签到,获得积分20
21秒前
Dotson发布了新的文献求助20
21秒前
出门见喜发布了新的文献求助10
23秒前
丁老三完成签到 ,获得积分10
24秒前
gky完成签到,获得积分10
25秒前
27秒前
嘻哈完成签到,获得积分10
28秒前
火力全开发布了新的文献求助10
29秒前
taowang完成签到,获得积分10
33秒前
地表飞猪应助科研通管家采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158