Using traffic flow characteristics to predict real-time conflict risk: A novel method for trajectory data analysis

计算机科学 梯度升压 支持向量机 机器学习 人工智能 数据挖掘 特征选择 随机森林 Boosting(机器学习) 多层感知器 毒物控制 人工神经网络 统计 数学 医学 环境卫生
作者
Yuan Chen,Ye Li,Helai Huang,Shiqi Wang,Zhenhao Sun,Yan Li
出处
期刊:Analytic Methods in Accident Research [Elsevier]
卷期号:35: 100217-100217 被引量:39
标识
DOI:10.1016/j.amar.2022.100217
摘要

The real-time conflict prediction model using traffic flow characteristics is much less studied than the crash-based model. This study aims at exploring the relationship between conflicts and traffic flow features with the consideration of heterogeneity and developing predictive models to identify conflict-prone conditions in a real-time manner. The high-resolution trajectory data from the HighD dataset is used as empirical data. A novel method with the virtual detector approach for traffic feature extraction and a two-step framework is proposed for the trajectory data analysis. The framework consists of an exploratory study by random parameter logit model with heterogeneity in means and variances and a comparative study on several machine learning methods, including eXtreme Gradient Boosting (Boosting), Random Forest (Bagging), Support Vector Machine (Single-classifier), and Multilayer-Perceptron (Deep neural network). Results indicate that (1) traffic flow characteristics have significant impacts on the probability of conflict occurrence; (2) the statistical model considering mean heterogeneity outperforms the counterpart and lane differences variables are found to significantly impact the means of random parameters for both lane variables and lane differences variables; (3) eXtreme Gradient Boosting trained on an under-sampled dataset turns out to be the best model with the highest AUC of 0.871 and precision of 0.867, showing that re-sampling techniques can significantly improve the model performance. The proposed model is found to be sensitive to the conflict threshold. Sensitivity analysis on feature selection further confirms that the conflict risk prediction should consider both subject lane features and lane difference features, which verifies the consistency with exploratory analysis based on the statistical model. The consistency between statistical models and machine learning methods improves the interpretability of results for the latter one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热芝完成签到,获得积分10
1秒前
嘒彼小星完成签到 ,获得积分10
1秒前
1秒前
哭泣的翠丝完成签到,获得积分10
2秒前
2秒前
jennyyu完成签到,获得积分10
2秒前
terence完成签到,获得积分10
2秒前
3秒前
3秒前
HopeStar发布了新的文献求助10
3秒前
马保国123发布了新的文献求助10
3秒前
Hello应助蓝莓松饼采纳,获得10
4秒前
4秒前
优秀的枫发布了新的文献求助10
4秒前
4秒前
KDC完成签到,获得积分10
4秒前
MuMu完成签到,获得积分10
5秒前
5秒前
Yana1311完成签到,获得积分10
6秒前
lkc发布了新的文献求助10
6秒前
大气飞丹完成签到 ,获得积分10
6秒前
调研昵称发布了新的文献求助10
6秒前
yu完成签到 ,获得积分10
7秒前
Lvj发布了新的文献求助10
7秒前
英俊的铭应助lanjq兰坚强采纳,获得10
8秒前
123发布了新的文献求助10
8秒前
含蓄的鹤发布了新的文献求助10
8秒前
8秒前
受伤访波完成签到,获得积分10
9秒前
香蕉觅云应助亻鱼采纳,获得10
9秒前
欢欢发布了新的文献求助10
9秒前
慕青应助研友_Z1WvKL采纳,获得10
9秒前
9秒前
多情怜蕾完成签到,获得积分10
10秒前
10秒前
AD发布了新的文献求助10
11秒前
谢朝邦发布了新的文献求助10
11秒前
科研通AI5应助玲珑油豆腐采纳,获得10
11秒前
11秒前
wjh发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759