Highly Asymmetric Graphene Layer Doping and Band Structure Manipulation in Rare Earth–Graphene Heterostructure by Targeted Bonding of the Intercalated Gadolinium

石墨烯 异质结 材料科学 光电发射光谱学 双层石墨烯 电子结构 纳米技术 兴奋剂 石墨烯纳米带 光电子学 凝聚态物理 化学物理 X射线光电子能谱 化学 物理 核磁共振
作者
Marek Kolmer,Benjamin Schrunk,M. Hupalo,Joseph Hall,Shen Chen,Jianhua Zhang,Cai‐Zhuang Wang,Adam Kaminski,Michael C. Tringides
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:126 (15): 6863-6873 被引量:7
标识
DOI:10.1021/acs.jpcc.2c01332
摘要

Heterostructures consisting of vertically stacked two-dimensional (2D) materials have recently gained large attention due to their highly controllable electronic properties and resulting quantum phases. In contrast to the mechanically stacked multilayered systems, which offer exceptional control over a stacking sequence or interlayer twist angles, the epitaxially grown 2D materials express unprecedented quality and stability over wafer-scale lengths. However, controlling the growth conditions remains a major obstacle toward the formation of complex, epitaxial heterostructures with well-defined electronic properties. Here, we synthesized a trilayer graphene heterostructure on the SiC(0001) substrate with two specific interlayer locations occupied by gadolinium. We applied multitechnique methodology based on low-temperature scanning tunneling microscopy/spectroscopy (STM/S) and angle-resolved photoelectron spectroscopy (ARPES) to determine the intercalant’s locations in the complex, epitaxial graphene heterostructure. Our approach relies on very high quality and large, micrometer-scale homogeneity of the synthesized system. The experimentally determined electronic structure is dominated by the two topmost graphene layers. Our spectroscopic results show quantitative agreement between global ARPES, local STM/S, and density functional theory predictions. The characterized electronic properties primarily reflect highly anisotropic doping levels between the two corresponding graphene layers, which significantly affect the band structure topology. Two pairs of hybridized massive Dirac bands from our initial synthesis─the bilayer graphene on the SiC(0001) substrate─are transformed upon Gd intercalation into two pairs of massless Dirac bands with a new hybridization region in between. Our results open perspectives in the realization of exotic 2D quantum materials via atomically precise synthesis of epitaxial, multilayered graphene–rare earth heterostructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sx发布了新的文献求助10
2秒前
情怀应助嗷呜嗷呜采纳,获得30
4秒前
5秒前
Lucas应助故里采纳,获得10
7秒前
丘比特应助醉熏的井采纳,获得10
8秒前
sx完成签到,获得积分10
9秒前
SciGPT应助衬衣采纳,获得10
10秒前
Hello应助年年采纳,获得30
11秒前
12秒前
善学以致用应助肥肥采纳,获得10
13秒前
14秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
17秒前
乐乐应助科研通管家采纳,获得20
17秒前
慕青应助醉熏的井采纳,获得10
17秒前
橘子石榴应助科研通管家采纳,获得10
17秒前
18秒前
19秒前
20秒前
22秒前
JamesPei应助默默小鸽子采纳,获得10
23秒前
大模型应助陶弈衡采纳,获得10
24秒前
伶俐鹤轩发布了新的文献求助10
24秒前
故里发布了新的文献求助10
24秒前
Ava应助可抵岁月漫长采纳,获得10
26秒前
田様应助小绵羊的酸奶盖采纳,获得10
27秒前
30秒前
32秒前
我是老大应助醉熏的井采纳,获得10
32秒前
斯文败类应助勤劳海冬采纳,获得10
33秒前
Singularity应助Nature采纳,获得20
33秒前
36秒前
陶弈衡发布了新的文献求助10
36秒前
38秒前
小绵羊的酸奶盖完成签到,获得积分10
38秒前
bkagyin应助MLR采纳,获得30
39秒前
41秒前
斯文败类应助醉熏的井采纳,获得10
41秒前
42秒前
Micheal完成签到,获得积分10
42秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161014
求助须知:如何正确求助?哪些是违规求助? 2812392
关于积分的说明 7895364
捐赠科研通 2471232
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094