亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Personalized Image Aesthetics Assessment via Meta-Learning With Bilevel Gradient Optimization

集合(抽象数据类型) 计算机科学 任务(项目管理) 双层优化 图像(数学) 样品(材料) 人工智能 美学 最优化问题 化学 算法 艺术 工程类 色谱法 程序设计语言 系统工程
作者
Hancheng Zhu,Leida Li,Jinjian Wu,Sicheng Zhao,Guiguang Ding,Guangming Shi
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (3): 1798-1811 被引量:21
标识
DOI:10.1109/tcyb.2020.2984670
摘要

Typical image aesthetics assessment (IAA) is modeled for the generic aesthetics perceived by an "average" user. However, such generic aesthetics models neglect the fact that users' aesthetic preferences vary significantly depending on their unique preferences. Therefore, it is essential to tackle the issue for personalized IAA (PIAA). Since PIAA is a typical small sample learning (SSL) problem, existing PIAA models are usually built by fine-tuning the well-established generic IAA (GIAA) models, which are regarded as prior knowledge. Nevertheless, this kind of prior knowledge based on "average aesthetics" fails to incarnate the aesthetic diversity of different people. In order to learn the shared prior knowledge when different people judge aesthetics, that is, learn how people judge image aesthetics, we propose a PIAA method based on meta-learning with bilevel gradient optimization (BLG-PIAA), which is trained using individual aesthetic data directly and generalizes to unknown users quickly. The proposed approach consists of two phases: 1) meta-training and 2) meta-testing. In meta-training, the aesthetics assessment of each user is regarded as a task, and the training set of each task is divided into two sets: 1) support set and 2) query set. Unlike traditional methods that train a GIAA model based on average aesthetics, we train an aesthetic meta-learner model by bilevel gradient updating from the support set to the query set using many users' PIAA tasks. In meta-testing, the aesthetic meta-learner model is fine-tuned using a small amount of aesthetic data of a target user to obtain the PIAA model. The experimental results show that the proposed method outperforms the state-of-the-art PIAA metrics, and the learned prior model of BLG-PIAA can be quickly adapted to unseen PIAA tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助cc采纳,获得10
6秒前
BBQ发布了新的文献求助10
9秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
14秒前
cc发布了新的文献求助10
19秒前
丰知然应助BBQ采纳,获得10
20秒前
小蘑菇应助田田爱说话采纳,获得10
50秒前
yanjiawen完成签到 ,获得积分10
54秒前
我是125完成签到,获得积分10
1分钟前
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
2分钟前
三点水发布了新的文献求助10
2分钟前
2分钟前
MchemG应助AcetylCoA采纳,获得200
2分钟前
英俊的铭应助三点水采纳,获得10
3分钟前
3分钟前
苗笑卉完成签到,获得积分10
3分钟前
孙老师完成签到 ,获得积分10
3分钟前
香蕉觅云应助ldy539采纳,获得30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
三点水发布了新的文献求助10
5分钟前
Wei发布了新的文献求助10
5分钟前
5分钟前
科研通AI2S应助三点水采纳,获得10
5分钟前
Hello应助三点水采纳,获得10
5分钟前
沿途有你完成签到 ,获得积分10
5分钟前
ldy539发布了新的文献求助30
5分钟前
5分钟前
完美世界应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
mashibeo完成签到,获得积分10
7分钟前
7分钟前
7分钟前
ygl0217发布了新的文献求助10
7分钟前
ygl0217完成签到,获得积分10
8分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422876
求助须知:如何正确求助?哪些是违规求助? 3023268
关于积分的说明 8903932
捐赠科研通 2710687
什么是DOI,文献DOI怎么找? 1486652
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682330