Polarization imaging based bruise detection of nectarine by using ResNet-18 and ghost bottleneck

瘀伤 园艺 瓶颈 极化(电化学) 计算机科学 人工智能 化学 生物 医学 外科 嵌入式系统 物理化学
作者
Yang Yu,Liang Wang,Min Huang,Qibing Zhu,Ruili Wang
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:189: 111916-111916 被引量:25
标识
DOI:10.1016/j.postharvbio.2022.111916
摘要

Bruise reduces the edible quality of nectarines and brings potential risks of cross-infection of fruit, but it is challenging to accurately detect bruised nectarines because of the color similarity between a sound and bruised area in nectarine fruit. Therefore, this research aims to develop an effective and efficient method, based on polarization imaging (PI) technology, for the detection of bruised nectarines. A total of 406 nectarines from three varieties, including 206 sound nectarines and 280 bruised nectarines made by the impact method, were used in the experiment. Polarization images of nectarines at four polarization angles (0°, 45°, 90°, and 135°) in five periods (6, 12, 24, 48, and 96 h after bruise formation), were acquired using a visible PI system. A lightweight network (ResNet-G18) that integrates ResNet-18 and ghost bottleneck was used to develop a classification model for sound and bruised nectarines based on the polarization image data. The results indicated that polarization images can effectively suppress the glare resulting from the smooth surface of nectarines, and overcome the interference of dark colors in detecting bruises. Meanwhile, the ResNet-G18 detection model achieves the best performance in both detection accuracy and efficiency, with a total classification precision of 96.21% and a true positive rate of 97.69% for bruised nectarines, and an average detection time of 17.32 ms for each fruit. Furthermore, the ResNet-G18 can recall all nectarines bruised for 12 h and above with 98.62% precision, showing excellent detection performance for early bruises. This study has demonstrated that the proposed PI technology coupled with an appropriate lightweight classification network can be effective and efficient for the detection of bruised nectarines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
两袖清风发布了新的文献求助10
刚刚
追寻白云发布了新的文献求助10
3秒前
3秒前
沟通亿心发布了新的文献求助10
5秒前
思维隋发布了新的文献求助10
6秒前
在水一方应助阿秋采纳,获得30
7秒前
追寻白云完成签到,获得积分20
10秒前
小馒头完成签到,获得积分10
11秒前
13秒前
MUAN完成签到 ,获得积分10
13秒前
嘻哈发布了新的文献求助10
14秒前
小二郎应助明天见采纳,获得10
16秒前
完美世界应助点墨采纳,获得10
16秒前
婷婷完成签到,获得积分10
17秒前
惟依发布了新的文献求助10
17秒前
17秒前
77发布了新的文献求助10
18秒前
希721完成签到 ,获得积分10
18秒前
syvshc完成签到,获得积分0
19秒前
JeromineJade发布了新的文献求助10
19秒前
susu完成签到,获得积分20
20秒前
危机的依凝完成签到 ,获得积分10
22秒前
Ray完成签到,获得积分10
23秒前
大模型应助Xin采纳,获得10
24秒前
25秒前
千江月完成签到,获得积分10
26秒前
小二郎应助嘻哈采纳,获得10
27秒前
CodeCraft应助科多兽骑士采纳,获得10
27秒前
欣慰外套完成签到 ,获得积分10
28秒前
28秒前
烟花应助77采纳,获得10
31秒前
wen_xxx发布了新的文献求助10
31秒前
染夏发布了新的文献求助10
31秒前
32秒前
陈尘完成签到,获得积分10
32秒前
bkagyin应助zhumeinv采纳,获得10
33秒前
34秒前
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993059
求助须知:如何正确求助?哪些是违规求助? 3533948
关于积分的说明 11264188
捐赠科研通 3273624
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 882991
科研通“疑难数据库(出版商)”最低求助积分说明 809629