Geographical origin traceability of traditional Chinese medicine Atractylodes macrocephala Koidz. by using multi-way fluorescence fingerprint and chemometric methods

指纹(计算) 可追溯性 偏最小二乘回归 主成分分析 计算机科学 模式识别(心理学) 人工智能 数据挖掘 集合(抽象数据类型) 数学 统计 机器学习 程序设计语言
作者
Yue‐Yue Chang,Hai‐Long Wu,Tong Wang,Yao Chen,Jian Yang,Haiyan Fu,Xiao‐Long Yang,Xu-Fu Li,Gong Zhang,Ru‐Qin Yu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:269: 120737-120737 被引量:23
标识
DOI:10.1016/j.saa.2021.120737
摘要

Atractylodes macrocephala Koidz. (AM) is an important plant of traditional Chinese medicine (TCM), and its status can be comparable with ginseng in China. The efficacy and quality of AM are closely related to the place of origin. Hence, we proposed a simple and fast strategy to classify AM from different geographical origins by using multi-way fluorescence fingerprint combined with chemometric methods. AM samples with different dilution levels have different fluorescence characteristics, resulting from different content of fluorescence components and chemical microenvironment. Therefore, AM samples were diluted 5-fold, 10-fold, and 20-fold with 40% ethanol aqueous solution to obtain excitation-emission matrix data, and multi-way (three-way and four-way) data arrays were constructed. And then, the fluorescence fingerprints of AM samples were characterized by three-way and four-way parallel factor analysis (PARAFAC). In addition, four pattern recognition methods were used to classify AM from different provinces. The results show that the four-way data array can provide more abundant information than three-way data arrays, so it is more conducive to sample classification. According to the results obtained from the analysis of four-way data array, the correct classification rate (CCR) of the cross-validation and prediction set obtained by partial least squares-discrimination analysis (PLS-DA) were 90.5% and 100%, respectively. To sum up, the proposed method can be regarded as a powerful, feasible, convenient, reliable, and universal classification tool for the classification of AM samples from different provinces and can be used as a promising method to realize the geographical origin traceability of other TCMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助时尚的天曼采纳,获得10
1秒前
1秒前
Mizuki完成签到,获得积分10
2秒前
3秒前
哈哈完成签到,获得积分10
4秒前
4秒前
4秒前
方源完成签到 ,获得积分10
4秒前
轻松雨旋完成签到 ,获得积分10
5秒前
悲凉的元菱完成签到,获得积分10
6秒前
7秒前
CodeCraft应助yjy123采纳,获得30
7秒前
天上人间完成签到,获得积分10
7秒前
G蛋白偶联发布了新的文献求助10
8秒前
张甜完成签到 ,获得积分10
11秒前
青藤之凉完成签到,获得积分10
11秒前
11秒前
傲娇皮皮虾完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
qifa完成签到,获得积分10
13秒前
Owen应助111采纳,获得10
13秒前
Air完成签到,获得积分10
14秒前
23发布了新的文献求助10
15秒前
南极以南完成签到,获得积分10
16秒前
徐徐俊发布了新的文献求助10
16秒前
17秒前
郁金香发布了新的文献求助20
17秒前
flywire发布了新的文献求助20
21秒前
量子星尘发布了新的文献求助10
21秒前
G蛋白偶联完成签到,获得积分10
22秒前
ZIS完成签到,获得积分10
25秒前
老实的黑米完成签到 ,获得积分10
26秒前
27秒前
ho完成签到,获得积分10
28秒前
28秒前
yhcy发布了新的文献求助10
30秒前
在水一方应助YMY采纳,获得10
31秒前
31秒前
zkk发布了新的文献求助10
31秒前
美好斓发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741788
求助须知:如何正确求助?哪些是违规求助? 5404183
关于积分的说明 15343341
捐赠科研通 4883301
什么是DOI,文献DOI怎么找? 2625012
邀请新用户注册赠送积分活动 1573824
关于科研通互助平台的介绍 1530761