Geographical origin traceability of traditional Chinese medicine Atractylodes macrocephala Koidz. by using multi-way fluorescence fingerprint and chemometric methods

指纹(计算) 可追溯性 偏最小二乘回归 主成分分析 计算机科学 模式识别(心理学) 人工智能 数据挖掘 集合(抽象数据类型) 数学 统计 机器学习 程序设计语言
作者
Yue‐Yue Chang,Hai‐Long Wu,Tong Wang,Yao Chen,Jian Yang,Haiyan Fu,Xiao‐Long Yang,Xu-Fu Li,Gong Zhang,Ru‐Qin Yu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:269: 120737-120737 被引量:23
标识
DOI:10.1016/j.saa.2021.120737
摘要

Atractylodes macrocephala Koidz. (AM) is an important plant of traditional Chinese medicine (TCM), and its status can be comparable with ginseng in China. The efficacy and quality of AM are closely related to the place of origin. Hence, we proposed a simple and fast strategy to classify AM from different geographical origins by using multi-way fluorescence fingerprint combined with chemometric methods. AM samples with different dilution levels have different fluorescence characteristics, resulting from different content of fluorescence components and chemical microenvironment. Therefore, AM samples were diluted 5-fold, 10-fold, and 20-fold with 40% ethanol aqueous solution to obtain excitation-emission matrix data, and multi-way (three-way and four-way) data arrays were constructed. And then, the fluorescence fingerprints of AM samples were characterized by three-way and four-way parallel factor analysis (PARAFAC). In addition, four pattern recognition methods were used to classify AM from different provinces. The results show that the four-way data array can provide more abundant information than three-way data arrays, so it is more conducive to sample classification. According to the results obtained from the analysis of four-way data array, the correct classification rate (CCR) of the cross-validation and prediction set obtained by partial least squares-discrimination analysis (PLS-DA) were 90.5% and 100%, respectively. To sum up, the proposed method can be regarded as a powerful, feasible, convenient, reliable, and universal classification tool for the classification of AM samples from different provinces and can be used as a promising method to realize the geographical origin traceability of other TCMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研小白鼠采纳,获得30
2秒前
Singularity应助阿敬采纳,获得10
2秒前
混子发布了新的文献求助10
3秒前
000000完成签到,获得积分10
4秒前
4秒前
jj发布了新的文献求助10
8秒前
眼睛大雨筠应助YJL采纳,获得20
9秒前
9秒前
NexusExplorer应助冷酷的丁丁采纳,获得10
10秒前
10秒前
王志松完成签到,获得积分10
11秒前
雨相所至发布了新的文献求助10
14秒前
Dada应助阿敬采纳,获得30
14秒前
洺全发布了新的文献求助10
14秒前
15秒前
15秒前
ccccccp完成签到,获得积分10
17秒前
小帅给小帅的求助进行了留言
17秒前
乐乱完成签到 ,获得积分10
17秒前
17秒前
海边的卡夫卡完成签到,获得积分10
18秒前
勤劳冰枫发布了新的文献求助10
18秒前
19秒前
思源应助gao采纳,获得10
20秒前
封迎松完成签到 ,获得积分10
20秒前
20秒前
21秒前
阿猫发布了新的文献求助10
22秒前
徐赞美发布了新的文献求助10
23秒前
23秒前
如意一斩完成签到,获得积分10
25秒前
星辰大海应助halona采纳,获得10
25秒前
张凯茜完成签到,获得积分20
25秒前
向日葵完成签到,获得积分10
26秒前
张铁柱完成签到,获得积分10
27秒前
27秒前
阿猫完成签到,获得积分20
28秒前
29秒前
IvanMcRae应助风是淡淡的云采纳,获得10
29秒前
yz123发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958212
求助须知:如何正确求助?哪些是违规求助? 3504372
关于积分的说明 11118239
捐赠科研通 3235651
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565