Nontargeted screening of veterinary drugs and their metabolites in milk based on mass defect filtering using liquid chromatography–high‐resolution mass spectrometry

兽药 兽药 色谱法 平行四边形 质谱法 药品 化学 分辨率(逻辑) 药理学 医学 兽医学 计算机科学 人工智能 机器人
作者
Tiantian Chen,Wenying Liang,Xiuqiong Zhang,Xin Lü,Chunxia Zhao,Guowang Xu
出处
期刊:Electrophoresis [Wiley]
卷期号:43 (18-19): 1822-1831 被引量:1
标识
DOI:10.1002/elps.202100296
摘要

Abstract The development of nontargeted screening strategy for veterinary drugs and their metabolites is very important for food safety. In this study, a nontargeted screening strategy was developed to find the potentially hazardous substances based on mass defect filtering (MDF) using liquid chromatography–high‐resolution mass spectrometry. First, the drug metabolites of 112 veterinary drugs from seven classes of antimicrobials were predicted. Second, three MDF models were established, including the traditional rectangular MDF, the enhanced parallelogram MDF, and the polygonal MDF. Finally, the strategy was applied to nontargeted screening of veterinary drugs in 36 milk samples. The polygonal MDF model based on the distribution area of parent drugs and their metabolites showed a better filtering effect. After removing food components and performing MDF, about 10% of the substances remained, and four veterinary drugs and six drug metabolites were discovered and identified, showing the effectiveness of this strategy. The nontargeted screening strategy can rapidly remove interfering substances and find the suspected compounds. It can also be used for nontargeted screening of veterinary drugs and their metabolites in other food matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ning发布了新的文献求助10
刚刚
小吕完成签到,获得积分10
1秒前
研友_Zl1w68完成签到,获得积分20
1秒前
1秒前
木安完成签到,获得积分10
1秒前
烟花应助LOVEMEVOL采纳,获得30
1秒前
JuJu完成签到,获得积分20
1秒前
zhaoh完成签到,获得积分20
2秒前
内向平萱发布了新的文献求助10
3秒前
3秒前
KaiZI完成签到 ,获得积分10
4秒前
洒脱发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
kzf丶bryant发布了新的文献求助10
6秒前
xxdefaj发布了新的文献求助10
6秒前
小次之山发布了新的文献求助10
7秒前
7秒前
顾子墨完成签到 ,获得积分10
8秒前
SciGPT应助LEE采纳,获得10
8秒前
9秒前
小蘑菇应助等待的雪碧采纳,获得10
10秒前
LeimingDai发布了新的文献求助10
11秒前
幽默的宛白完成签到,获得积分20
11秒前
隐形曼青应助zhaoh采纳,获得10
11秒前
Jennifer发布了新的文献求助10
11秒前
12秒前
yyyfff完成签到,获得积分10
13秒前
caiganyuhhh完成签到 ,获得积分10
13秒前
13秒前
yoyo完成签到,获得积分10
13秒前
gaoww发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助50
14秒前
LOVEMEVOL完成签到,获得积分10
14秒前
14秒前
rjj001022驳回了1+1应助
14秒前
Kumiko完成签到,获得积分10
15秒前
15秒前
風声鶴唳完成签到,获得积分10
15秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662771
求助须知:如何正确求助?哪些是违规求助? 3223591
关于积分的说明 9752272
捐赠科研通 2933546
什么是DOI,文献DOI怎么找? 1606137
邀请新用户注册赠送积分活动 758279
科研通“疑难数据库(出版商)”最低求助积分说明 734771