Texture Optimization and Verification for the Thrust Bearing Used in Rotary Compressors Based on a Transient Tribo-Dynamics Model

推力轴承 气体压缩机 推力 方位(导航) 瞬态(计算机编程) 圆柱 机械工程 材料科学 联轴节(管道) 表面光洁度 工程类 汽车工程 计算机科学 人工智能 操作系统
作者
Bugao Lyu,Lilong Jing,Xianghui Meng,Ruichao Liu
出处
期刊:Journal of tribology [ASME International]
卷期号:144 (8) 被引量:6
标识
DOI:10.1115/1.4053261
摘要

Abstract Rotary compressors are designed more and more compact, and the compressor cylinder’s ambient pressure is designed very high to facilitate oil separation and improve efficiency. However, these designs cause the working condition of the thrust bearing becoming harsher, and severe wear may occur. The present study is aimed at mitigating its wear condition through surface texturing. Based on a transient tribo-dynamics model considering the coupling effect of the journal and thrust bearings, a texture optimization study for the thrust bearing is conducted, in which three different stochastic optimization algorithms are utilized. The results show that thrust bearings with optimized textures have significantly reduced contact forces and wear under a high working frequency due to an extra hydrodynamic support around the texture dimples. The optimized texture designs are fabricated on the thrust bearing surfaces by a high-accurate picosecond laser machine, and their performance is assessed through experiments using a compressor performance test platform. The experiment results confirm that the textured thrust bearing has a lower wear depth. Moreover, the coefficient of performance (COP) of the testing compressor with textured thrust bearing is increased while its input power decreases, which implies a reduced friction force and a higher energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
albertchan完成签到,获得积分10
4秒前
4秒前
feifei发布了新的文献求助10
5秒前
6秒前
魁拔蛮吉完成签到 ,获得积分10
8秒前
晓峰完成签到,获得积分20
8秒前
yearluren完成签到,获得积分10
8秒前
peiyy完成签到,获得积分10
8秒前
领导范儿应助TT采纳,获得10
13秒前
清脆代桃完成签到 ,获得积分10
13秒前
科研通AI5应助ghh采纳,获得10
13秒前
叫滚滚发布了新的文献求助10
13秒前
北极熊爱去非洲买蜂蜜小蛋糕完成签到 ,获得积分10
15秒前
yeyong11完成签到,获得积分10
18秒前
CodeCraft应助柔弱的鱼采纳,获得30
19秒前
黄可以完成签到,获得积分10
19秒前
美少叔叔完成签到 ,获得积分10
20秒前
心灵美的修洁完成签到 ,获得积分10
21秒前
lzd完成签到,获得积分10
23秒前
24秒前
诸笑白发布了新的文献求助10
26秒前
26秒前
研友_LOK59L完成签到,获得积分10
28秒前
七子完成签到 ,获得积分10
29秒前
郑盼秋完成签到,获得积分10
29秒前
youjiang发布了新的文献求助10
30秒前
32秒前
孤独收割人完成签到,获得积分10
32秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
34秒前
Upupcc发布了新的文献求助10
36秒前
36秒前
勤劳落雁发布了新的文献求助10
37秒前
37秒前
37秒前
38秒前
38秒前
38秒前
周周发布了新的文献求助10
38秒前
39秒前
科研通AI5应助解青文采纳,获得10
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849