亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Minimizing Age of Information in Multiaccess-Edge-Computing-Assisted IoT Networks

计算机科学 调度(生产过程) 网络数据包 边缘计算 最优化问题 分布式计算 计算机网络 数学优化 GSM演进的增强数据速率 算法 数学 电信
作者
Ali Muhammad,Ibrahim Sorkhoh,Moataz Samir,Dariush Ebrahimi,Chadi Assi
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (15): 13052-13066
标识
DOI:10.1109/jiot.2021.3139044
摘要

Internet of Things (IoT) applications, such as augmented/virtual reality, tactile Internet, immersive gaming, etc., are currently experiencing an unprecedented growth in their demand. IoT devices are constrained by limited computation and power features and might experience excessive computational latency to support resource-intensive tasks. Multiaccess edge computing (MEC) appears to be a promising solution in this regard to expedite the computations of resource-intensive tasks by offloading them to the edge of the network. This article considers a scenario where a base station (BS) serves traffic streams from multiple IoT devices. The packets from each stream arrive at the BS (following a stochastic process) and then forwarded to their respective destinations after they are processed by the MEC node. The scheduling decisions are aimed to keep the information fresh at the destination. The information freshness is captured by Age of Information (AoI) metric. We aim to minimize the expected sum AoI for the MEC-assisted IoT network and provide mathematically traceable expressions for the AoI. First, an optimization problem is formulated to find the optimal scheduling policy in order to minimize the expected sum AoI. The optimization problem is an integer linear programming (LP) problem, which is generally difficult to solve. Hence, we provide a simpler formulation of the problem and derive a more traceable expression for the expected sum AoI. With this approach, the joint impact of stochastic arrivals, scheduling policy, and unreliable channel conditions on the AoI is assessed. We also propose low-complexity algorithms to obtain results for larger networks. Finally, through extensive simulations, we demonstrate the effectiveness of our proposed methods as compared to other existing strategies in terms of achievable AoI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly发布了新的文献求助10
1秒前
俞思含发布了新的文献求助10
3秒前
6秒前
NS完成签到,获得积分10
11秒前
15秒前
bcc666发布了新的文献求助10
21秒前
星辰大海应助Elton采纳,获得10
22秒前
充电宝应助bcc666采纳,获得10
28秒前
28秒前
Elton发布了新的文献求助10
36秒前
37秒前
凯当以慷发布了新的文献求助10
43秒前
58秒前
沉静的雁菡应助欣欣采纳,获得10
59秒前
凯当以慷完成签到,获得积分10
1分钟前
打打应助三个土拔鼠采纳,获得10
1分钟前
kanoz完成签到 ,获得积分10
1分钟前
automan发布了新的文献求助10
1分钟前
automan完成签到,获得积分10
1分钟前
1分钟前
科研通AI5应助精灵夜雨采纳,获得10
1分钟前
柏风华发布了新的文献求助10
1分钟前
rnf完成签到,获得积分10
1分钟前
1分钟前
柏风华完成签到,获得积分10
1分钟前
zhouleiwang完成签到,获得积分10
1分钟前
爆米花应助zcl采纳,获得10
1分钟前
Honghao发布了新的文献求助10
1分钟前
rnf完成签到,获得积分10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Xiaoxiao应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
欣喜的人龙完成签到 ,获得积分10
1分钟前
一口辰发布了新的文献求助10
1分钟前
zcl发布了新的文献求助10
1分钟前
感动白开水完成签到,获得积分10
1分钟前
HEIKU应助Xiexie采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555693
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390797
捐赠科研通 2831055
什么是DOI,文献DOI怎么找? 1556299
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803