Symptom-Based Predictive Model of COVID-19 Disease in Children

流行病学 医学 2019年冠状病毒病(COVID-19) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 疾病 冠状病毒 儿科 2019-20冠状病毒爆发 内科学 病理 传染病(医学专业) 爆发
作者
Jesús M Antoñanzas,Aida Perramon,Cayetana López,Mireia Boneta,Cristina Aguilera,Ramon Capdevila,Anna Gatell,Pepe Serrano Marchuet,Miriam Poblet,Dolors Canadell,Mònica Vilà,Georgina Catasús,Cinta Valldepérez,Martí Català,Pere Soler‐Palacín,Clara Prats,Antoni Soriano‐Arandes
出处
期刊:Viruses [Multidisciplinary Digital Publishing Institute]
卷期号:14 (1): 63-63 被引量:8
标识
DOI:10.3390/v14010063
摘要

Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is neither always accessible nor easy to perform in children. We aimed to propose a machine learning model to assess the need for a SARS-CoV-2 test in children (<16 years old), depending on their clinical symptoms.Epidemiological and clinical data were obtained from the REDCap® registry. Overall, 4434 SARS-CoV-2 tests were performed in symptomatic children between 1 November 2020 and 31 March 2021, 784 were positive (17.68%). We pre-processed the data to be suitable for a machine learning (ML) algorithm, balancing the positive-negative rate and preparing subsets of data by age. We trained several models and chose those with the best performance for each subset.The use of ML demonstrated an AUROC of 0.65 to predict a COVID-19 diagnosis in children. The absence of high-grade fever was the major predictor of COVID-19 in younger children, whereas loss of taste or smell was the most determinant symptom in older children.Although the accuracy of the models was lower than expected, they can be used to provide a diagnosis when epidemiological data on the risk of exposure to COVID-19 is unknown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助求文者采纳,获得10
刚刚
OKOK完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
4秒前
查理发布了新的文献求助10
7秒前
7秒前
冷静太君完成签到,获得积分10
8秒前
闪闪新梅发布了新的文献求助10
9秒前
11秒前
菠萝派发布了新的文献求助10
11秒前
chen完成签到,获得积分10
11秒前
hiauin完成签到 ,获得积分10
12秒前
单身的钧完成签到,获得积分10
12秒前
gaoyang123完成签到 ,获得积分10
13秒前
15秒前
15秒前
Owen应助穆青采纳,获得10
15秒前
涉几尘发布了新的文献求助10
15秒前
17秒前
17秒前
wjx发布了新的文献求助10
18秒前
19秒前
mjf111发布了新的文献求助10
19秒前
孤独的猎手给孤独的猎手的求助进行了留言
21秒前
Singularity应助琥珀采纳,获得10
22秒前
22秒前
23秒前
852应助Y哦莫哦莫采纳,获得10
23秒前
星辰大海应助小米采纳,获得10
24秒前
24秒前
涉几尘完成签到,获得积分20
24秒前
26秒前
拼搏惜金发布了新的文献求助10
26秒前
肚子藤完成签到,获得积分10
26秒前
风清扬应助shuaige采纳,获得10
26秒前
123发布了新的文献求助10
27秒前
wdccx完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011