Bridging the Gap Between AI and Explainability in the GDPR: Towards Trustworthiness-by-Design in Automated Decision-Making

计算机科学 保护 人工智能 桥接(联网) 风险分析(工程) 通用数据保护条例 数据科学 补语(音乐) 机器学习 可信赖性 领域(数学) 1998年数据保护法 计算机安全 基因 医学 表型 生物化学 护理部 化学 互补 纯数学 数学
作者
Ronan Hamon,H. Junklewitz,Ignacio Sanchez,Gianclaudio Malgieri,Paul De Hert
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:17 (1): 72-85 被引量:67
标识
DOI:10.1109/mci.2021.3129960
摘要

Can satisfactory explanations for complex machine learning models be achieved in high-risk automated decision-making? How can such explanations be integrated into a data protection framework safeguarding a right to explanation? This article explores from an interdisciplinary point of view the connection between existing legal requirements for the explainability of AI systems set out in the General Data Protection Regulation (GDPR) and the current state of the art in the field of explainable AI. It studies the challenges of providing human legible explanations for current and future AI-based decision-making systems in practice, based on two scenarios of automated decision-making in credit scoring risks and medical diagnosis of COVID-19. These scenarios exemplify the trend towards increasingly complex machine learning algorithms in automated decision-making, both in terms of data and models. Current machine learning techniques, in particular those based on deep learning, are unable to make clear causal links between input data and final decisions. This represents a limitation for providing exact, human-legible reasons behind specific decisions, and presents a serious challenge to the provision of satisfactory, fair and transparent explanations. Therefore, the conclusion is that the quality of explanations might not be considered as an adequate safeguard for automated decision-making processes under the GDPR. Accordingly, additional tools should be considered to complement explanations. These could include algorithmic impact assessments, other forms of algorithmic justifications based on broader AI principles, and new technical developments in trustworthy AI. This suggests that eventually all of these approaches would need to be considered as a whole.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
普鲁卡因发布了新的文献求助10
1秒前
体贴初彤发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
2秒前
hufan2441完成签到,获得积分10
2秒前
苏倩完成签到,获得积分10
3秒前
江流有声完成签到,获得积分10
4秒前
852应助hufan2441采纳,获得10
4秒前
5秒前
5秒前
wwz发布了新的文献求助10
6秒前
loey发布了新的文献求助10
6秒前
忧郁柠檬完成签到,获得积分20
7秒前
zoozoo发布了新的文献求助10
8秒前
普鲁卡因完成签到,获得积分10
9秒前
LILILI完成签到,获得积分10
9秒前
10秒前
所所应助huang采纳,获得50
10秒前
甜滋滋发布了新的文献求助10
10秒前
11秒前
安详中蓝完成签到,获得积分20
11秒前
11秒前
11秒前
12秒前
12秒前
江流有声发布了新的文献求助10
12秒前
14秒前
14秒前
15秒前
1235发布了新的文献求助10
15秒前
emchavezangel发布了新的文献求助10
16秒前
16秒前
子车雁开发布了新的文献求助10
17秒前
ardejiang发布了新的文献求助10
17秒前
阿斯披粼完成签到,获得积分10
19秒前
甜滋滋完成签到,获得积分10
19秒前
19秒前
大模型应助wwz采纳,获得10
20秒前
Mr.Ren完成签到,获得积分10
20秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422515
求助须知:如何正确求助?哪些是违规求助? 3022733
关于积分的说明 8902510
捐赠科研通 2710194
什么是DOI,文献DOI怎么找? 1486341
科研通“疑难数据库(出版商)”最低求助积分说明 687038
邀请新用户注册赠送积分活动 682261