Spectral Data Classification By One-Dimensional Convolutional Neural Networks

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 超参数 支持向量机 维数之咒 特征提取 领域(数学) 机器学习 数学 纯数学
作者
Fanguo Zeng,Peng Wen,Gaobi Kang,Zekai Feng,Xuejun Yue
标识
DOI:10.1109/ipccc51483.2021.9679444
摘要

Despite the dominance of Chemometric methods and traditional machine learning algorithms in the field of one-dimensional (1D) spectral data analysis for decades, they still rely on trivial pre-processing steps and hand-crafted feature selections based on domain expertise. Deep two-dimensional convolutional neural networks (2D CNNs) which utilize automatic feature extraction for maximum accuracy have recently achieved overwhelming success in areas such as computer vision and natural language processing. Nevertheless, the 2D CNNs can not be directly applied to the 1D spectral data classification tasks restrained by both the lower dimensionality and scarce samples. Consequently, several dedicated adaptations must be made to ensure the successful implementation of 1D CNN. In this study, a shallow 1D CNN, aiming to attain a compromise between high performance and ease of implementation, was presented. Then, an effective strategy to select architecture hyperparameters and facilitate the fine-tuning process was proposed. Finally, a real case of spectral classification of corn seed viability using visible near-infrared (Vis-NIR) data was carried out, and the 1D CNN achieved 93.3% accuracy, which was superior to the PLS-DA (91.1%) and SVM (86.7%). The results from this study demonstrate that 1D CNN with a highly compact architecture can be devised to effectively classify spectral data in domain-specific tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
boshi发布了新的文献求助10
刚刚
ghh完成签到,获得积分10
1秒前
Jasper应助2425采纳,获得10
1秒前
淡淡月饼完成签到,获得积分10
2秒前
2秒前
拼搏惜金完成签到,获得积分10
4秒前
可爱的函函应助Alma采纳,获得10
5秒前
我是老大应助铃儿采纳,获得10
6秒前
7秒前
7秒前
9秒前
研友_Zeg3VL完成签到,获得积分10
10秒前
香蕉觅云应助C_采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得50
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
12秒前
球球w应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得50
12秒前
852应助科研通管家采纳,获得10
12秒前
烟花应助王是SCI2采纳,获得10
12秒前
wdl发布了新的文献求助10
13秒前
13秒前
Mr.zhou发布了新的文献求助10
14秒前
Hu发布了新的文献求助10
14秒前
15秒前
Bob发布了新的文献求助10
16秒前
17秒前
传奇3应助277采纳,获得10
17秒前
19秒前
HDrinnk发布了新的文献求助10
19秒前
19秒前
2425发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559805
求助须知:如何正确求助?哪些是违规求助? 3134281
关于积分的说明 9406327
捐赠科研通 2834314
什么是DOI,文献DOI怎么找? 1558059
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716522