Spectral Data Classification By One-Dimensional Convolutional Neural Networks

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 超参数 支持向量机 维数之咒 特征提取 领域(数学) 机器学习 数学 纯数学
作者
Fanguo Zeng,Peng Wen,Gaobi Kang,Zekai Feng,Xuejun Yue
标识
DOI:10.1109/ipccc51483.2021.9679444
摘要

Despite the dominance of Chemometric methods and traditional machine learning algorithms in the field of one-dimensional (1D) spectral data analysis for decades, they still rely on trivial pre-processing steps and hand-crafted feature selections based on domain expertise. Deep two-dimensional convolutional neural networks (2D CNNs) which utilize automatic feature extraction for maximum accuracy have recently achieved overwhelming success in areas such as computer vision and natural language processing. Nevertheless, the 2D CNNs can not be directly applied to the 1D spectral data classification tasks restrained by both the lower dimensionality and scarce samples. Consequently, several dedicated adaptations must be made to ensure the successful implementation of 1D CNN. In this study, a shallow 1D CNN, aiming to attain a compromise between high performance and ease of implementation, was presented. Then, an effective strategy to select architecture hyperparameters and facilitate the fine-tuning process was proposed. Finally, a real case of spectral classification of corn seed viability using visible near-infrared (Vis-NIR) data was carried out, and the 1D CNN achieved 93.3% accuracy, which was superior to the PLS-DA (91.1%) and SVM (86.7%). The results from this study demonstrate that 1D CNN with a highly compact architecture can be devised to effectively classify spectral data in domain-specific tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
努力游游完成签到,获得积分10
刚刚
专注的玉米完成签到,获得积分10
刚刚
敏感的海雪关注了科研通微信公众号
2秒前
感动梦岚发布了新的文献求助10
2秒前
3秒前
5t5发布了新的文献求助10
4秒前
星辰大海应助多情如容采纳,获得10
4秒前
4秒前
summitekey发布了新的文献求助10
5秒前
zeng发布了新的文献求助10
5秒前
DAdump1ing完成签到,获得积分10
6秒前
lllkkk发布了新的文献求助10
7秒前
8秒前
贝卓飞完成签到,获得积分10
8秒前
8秒前
zhou默完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
10秒前
Akim应助lulu采纳,获得10
10秒前
10秒前
张浩洋发布了新的文献求助10
10秒前
斯文白梦完成签到,获得积分20
11秒前
11秒前
万能图书馆应助Tanxaio采纳,获得10
12秒前
小马甲应助sye采纳,获得10
12秒前
13秒前
科研通AI6应助长医德莱文采纳,获得10
13秒前
Foch发布了新的文献求助10
13秒前
摩根发布了新的文献求助10
14秒前
14秒前
14秒前
根号3发布了新的文献求助30
14秒前
lxl发布了新的文献求助10
14秒前
追寻荔枝发布了新的文献求助10
14秒前
王能行完成签到,获得积分10
15秒前
木木发布了新的文献求助10
15秒前
珊明治发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070141
求助须知:如何正确求助?哪些是违规求助? 4291362
关于积分的说明 13370057
捐赠科研通 4111607
什么是DOI,文献DOI怎么找? 2251577
邀请新用户注册赠送积分活动 1256761
关于科研通互助平台的介绍 1189297