Multiparametric MRI-based radiomics nomogram for preoperative prediction of lymphovascular invasion and clinical outcomes in patients with breast invasive ductal carcinoma

列线图 医学 无线电技术 淋巴血管侵犯 放射科 乳房磁振造影 队列 逻辑回归 单变量 乳腺癌 单变量分析 多元分析 肿瘤科 内科学 多元统计 癌症 乳腺摄影术 转移 数学 统计
作者
Junjie Zhang,Guanghui Wang,Jialiang Ren,Zhao Yang,Dandan Li,Yanfen Cui,Xiaotang Yang
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (6): 4079-4089 被引量:39
标识
DOI:10.1007/s00330-021-08504-6
摘要

To develop a multiparametric MRI-based radiomics nomogram for predicting lymphovascular invasion (LVI) status and clinical outcomes in patients with breast invasive ductal carcinoma (IDC).A total of 160 patients with pathologically confirmed breast IDC (training cohort: n = 112; validation cohort: n = 48) who underwent preoperative breast MRI were included. Imaging features were extracted from T2-weighted imaging (T2WI), apparent diffusion coefficient (ADC) maps, and contrast-enhanced T1-weighted imaging (cT1WI) sequences. A four-step procedure was applied for feature selection and radiomics signature building. Univariate and multivariate logistic regression analyses were conducted to identify the features associated with LVI, which were then incorporated into the radiomics nomogram. The performance of the nomogram was evaluated by its discrimination, calibration, and clinical usefulness. Kaplan-Meier survival curves based on the two radiomics models were used to estimate disease-free survival (DFS).The fusion radiomics signature of the T2WI, cT1WI, and ADC maps achieved a better predictive efficacy for LVI than either of them alone. The proposed radiomics nomogram, incorporating the fusion radiomics signature and MRI-reported peritumoral edema, showed satisfactory capabilities of calibration and discrimination in both training and validation datasets, with AUCs of 0.919 (95% CI: 0.871-0.967) and 0.863 (95% CI: 0.726-0.999), respectively. The radiomics signature and nomogram-defined high-risk groups had a shorter DFS than those in the low-risk groups (both p < 0.05). Higher Rad-scores were independently associated with a worse DFS in the whole cohort (p < 0.05).The proposed nomogram, incorporating multiparametric MRI-based radiomics signature and MRI-reported peritumoral edema, achieved a satisfactory preoperative prediction of LVI and clinical outcomes in IDC patients.• The fusion radiomics signature of the T2WI, cT1WI, and ADC maps achieved a better predictive efficacy for LVI than either of them alone. • The proposed nomogram achieved a favorable prediction of LVI in IDC patients with AUCs of 0.919 and 0.863 in the training and validation datasets, respectively. • The radiomics model could classify patients into high- and low-risk groups with significant differences in DFS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庾无敌发布了新的文献求助30
刚刚
丁元英完成签到,获得积分10
刚刚
喜悦凌丝完成签到 ,获得积分20
刚刚
打打应助科研小白要毕业采纳,获得10
2秒前
nazure发布了新的文献求助10
3秒前
哈哈完成签到,获得积分10
5秒前
5秒前
5秒前
小郝发布了新的文献求助10
6秒前
JamesPei应助Gardenia2001采纳,获得10
6秒前
lululuao完成签到 ,获得积分10
6秒前
9秒前
9秒前
10秒前
隐形曼青应助周沛沛采纳,获得10
10秒前
不能说的秘密完成签到,获得积分10
11秒前
12秒前
gs发布了新的文献求助10
12秒前
科研通AI2S应助xqwwqx采纳,获得10
12秒前
希望天下0贩的0应助Irene采纳,获得10
13秒前
14秒前
科目三应助从容安珊采纳,获得10
14秒前
mokano完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
17秒前
18秒前
小郝完成签到,获得积分10
18秒前
lijo完成签到,获得积分10
18秒前
19秒前
19秒前
爱吃肥牛完成签到 ,获得积分10
20秒前
20秒前
21秒前
野性的柠檬应助nazure采纳,获得10
21秒前
小蘑菇应助卷卷516采纳,获得10
21秒前
lululuao发布了新的文献求助10
22秒前
汉堡包应助manan采纳,获得10
22秒前
科研小白要毕业完成签到,获得积分10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459237
求助须知:如何正确求助?哪些是违规求助? 3053759
关于积分的说明 9038343
捐赠科研通 2743031
什么是DOI,文献DOI怎么找? 1504647
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664