MTT: an efficient model for encrypted network traffic classification using multi-task transformer

计算机科学 交通分类 字节 网络数据包 数据挖掘 加密 鉴定(生物学) 人工神经网络 人工智能 任务(项目管理) 机器学习 计算机网络
作者
Weiping Zheng,Jianhao Zhong,Qizhi Zhang,Gansen Zhao
出处
期刊:Applied Intelligence [Springer Nature]
标识
DOI:10.1007/s10489-021-03032-8
摘要

Network traffic classification aims to associate the network traffic with a class of traffic characterization (e.g., Streaming) or applications (e.g., Facebook). This ability plays an important role in advanced network management. The tasks of traffic characterization and application identification are usually implemented by individual models. However, when multiple models are deployed in the online environment, this causes a dramatic increase in the complexity, resource demand and maintenance costs. In this paper, an efficient multi-task learning method named multi-task transformer (MTT) is proposed. It simultaneously classifies the traffic characterization and application identification tasks. The proposed model considers the input packet as a sequence of bytes and applies a multi-head attention mechanism to extract features. Experiments are conducted on the ISCX VPN-nonVPN dataset to demonstrate the effectiveness of MTT. \(F_1\) scores of 98.75% and 99.35% have been achieved for application identification and traffic characterization, respectively. To the best of our knowledge, the results are better than the state-of-the-art results. The MTT model outputs the two results simultaneously in \(\sim\) 0.1 milliseconds (per packet), which satisfies the requirement of online traffic classification. Compared with the 1D-CNN and 2D-CNN models, the proposed MTT model is more stable, presents higher classification performance and requires less storage space. Finally, the selection strategies of input length for different neural networks are suggested and the related principles are investigated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AA1完成签到,获得积分10
1秒前
蜗牛发布了新的文献求助30
1秒前
mouxq发布了新的文献求助10
3秒前
4秒前
nessa完成签到 ,获得积分10
5秒前
CGN发布了新的文献求助10
6秒前
浮游应助Jay采纳,获得10
6秒前
panqi77完成签到,获得积分20
7秒前
和谐听白发布了新的文献求助10
8秒前
lv完成签到,获得积分10
10秒前
华仔应助Raunio采纳,获得10
13秒前
乐乐应助背后一江采纳,获得10
15秒前
野原完成签到,获得积分20
16秒前
李健应助橘子夏采纳,获得10
17秒前
19秒前
研友_VZG7GZ应助高高乌冬面采纳,获得10
20秒前
领导范儿应助野原采纳,获得10
22秒前
吾日三省吾身完成签到,获得积分10
23秒前
kk发布了新的文献求助10
24秒前
28秒前
niu完成签到,获得积分10
30秒前
32秒前
32秒前
大龙哥886应助旺旺采纳,获得10
33秒前
35秒前
123lx完成签到,获得积分10
37秒前
mouxq发布了新的文献求助10
37秒前
yyx238666发布了新的文献求助10
39秒前
你猜猜看发布了新的文献求助10
39秒前
Szw666完成签到,获得积分10
39秒前
40秒前
兰高锋完成签到,获得积分10
41秒前
过往匆匆发布了新的文献求助10
42秒前
49秒前
糊涂涂完成签到,获得积分20
49秒前
50秒前
大模型应助kk采纳,获得10
50秒前
53秒前
muzi完成签到,获得积分10
54秒前
深情安青应助王强采纳,获得10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5566814
求助须知:如何正确求助?哪些是违规求助? 4651492
关于积分的说明 14696596
捐赠科研通 4593548
什么是DOI,文献DOI怎么找? 2520215
邀请新用户注册赠送积分活动 1492434
关于科研通互助平台的介绍 1463528