MTT: an efficient model for encrypted network traffic classification using multi-task transformer

计算机科学 交通分类 字节 网络数据包 数据挖掘 加密 鉴定(生物学) 人工神经网络 人工智能 任务(项目管理) 机器学习 计算机网络
作者
Weiping Zheng,Jianhao Zhong,Qizhi Zhang,Gansen Zhao
出处
期刊:Applied Intelligence [Springer Science+Business Media]
标识
DOI:10.1007/s10489-021-03032-8
摘要

Network traffic classification aims to associate the network traffic with a class of traffic characterization (e.g., Streaming) or applications (e.g., Facebook). This ability plays an important role in advanced network management. The tasks of traffic characterization and application identification are usually implemented by individual models. However, when multiple models are deployed in the online environment, this causes a dramatic increase in the complexity, resource demand and maintenance costs. In this paper, an efficient multi-task learning method named multi-task transformer (MTT) is proposed. It simultaneously classifies the traffic characterization and application identification tasks. The proposed model considers the input packet as a sequence of bytes and applies a multi-head attention mechanism to extract features. Experiments are conducted on the ISCX VPN-nonVPN dataset to demonstrate the effectiveness of MTT. \(F_1\) scores of 98.75% and 99.35% have been achieved for application identification and traffic characterization, respectively. To the best of our knowledge, the results are better than the state-of-the-art results. The MTT model outputs the two results simultaneously in \(\sim\) 0.1 milliseconds (per packet), which satisfies the requirement of online traffic classification. Compared with the 1D-CNN and 2D-CNN models, the proposed MTT model is more stable, presents higher classification performance and requires less storage space. Finally, the selection strategies of input length for different neural networks are suggested and the related principles are investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小芳不止妖娆完成签到,获得积分10
刚刚
聪明摩托完成签到,获得积分10
1秒前
飞0802完成签到,获得积分10
2秒前
飞翔的霸天哥应助hc采纳,获得30
2秒前
cc完成签到,获得积分10
2秒前
铁盐君完成签到,获得积分10
2秒前
ding应助聪明摩托采纳,获得10
4秒前
eliseo完成签到 ,获得积分10
5秒前
hhl完成签到,获得积分10
5秒前
DaSheng完成签到,获得积分10
6秒前
LL666完成签到 ,获得积分10
6秒前
灵美完成签到,获得积分10
6秒前
魁梧的黄豆完成签到,获得积分10
7秒前
Muncy完成签到 ,获得积分10
9秒前
领导范儿应助铁盐君采纳,获得10
10秒前
andrew完成签到,获得积分10
10秒前
爱听歌康乃馨完成签到,获得积分10
11秒前
魔幻的妖丽完成签到 ,获得积分10
11秒前
bio-tang完成签到,获得积分10
12秒前
大模型应助激昂的南烟采纳,获得10
13秒前
YYYYYYYYY完成签到,获得积分10
13秒前
SC武完成签到,获得积分10
15秒前
sunchaoyue完成签到,获得积分10
16秒前
珊珊4532完成签到 ,获得积分10
16秒前
Zhangll完成签到,获得积分10
17秒前
木子完成签到 ,获得积分10
17秒前
SCI完成签到 ,获得积分10
17秒前
机密塔完成签到,获得积分10
19秒前
小魏哥完成签到,获得积分10
19秒前
zzx完成签到,获得积分10
19秒前
RenHP完成签到,获得积分10
19秒前
寒冷荧荧完成签到,获得积分10
20秒前
机灵石头完成签到,获得积分10
20秒前
感性的寄真完成签到 ,获得积分10
20秒前
qinkoko完成签到,获得积分10
20秒前
April完成签到,获得积分10
20秒前
猫与咖啡完成签到,获得积分10
20秒前
我是老大应助激昂的南烟采纳,获得10
22秒前
仅仅完成签到 ,获得积分10
22秒前
zyshao完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495348
关于积分的说明 11076451
捐赠科研通 3225877
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867596
科研通“疑难数据库(出版商)”最低求助积分说明 800839