MTT: an efficient model for encrypted network traffic classification using multi-task transformer

计算机科学 交通分类 字节 网络数据包 数据挖掘 加密 鉴定(生物学) 人工神经网络 人工智能 任务(项目管理) 机器学习 计算机网络
作者
Weiping Zheng,Jianhao Zhong,Qizhi Zhang,Gansen Zhao
出处
期刊:Applied Intelligence [Springer Nature]
标识
DOI:10.1007/s10489-021-03032-8
摘要

Network traffic classification aims to associate the network traffic with a class of traffic characterization (e.g., Streaming) or applications (e.g., Facebook). This ability plays an important role in advanced network management. The tasks of traffic characterization and application identification are usually implemented by individual models. However, when multiple models are deployed in the online environment, this causes a dramatic increase in the complexity, resource demand and maintenance costs. In this paper, an efficient multi-task learning method named multi-task transformer (MTT) is proposed. It simultaneously classifies the traffic characterization and application identification tasks. The proposed model considers the input packet as a sequence of bytes and applies a multi-head attention mechanism to extract features. Experiments are conducted on the ISCX VPN-nonVPN dataset to demonstrate the effectiveness of MTT. \(F_1\) scores of 98.75% and 99.35% have been achieved for application identification and traffic characterization, respectively. To the best of our knowledge, the results are better than the state-of-the-art results. The MTT model outputs the two results simultaneously in \(\sim\) 0.1 milliseconds (per packet), which satisfies the requirement of online traffic classification. Compared with the 1D-CNN and 2D-CNN models, the proposed MTT model is more stable, presents higher classification performance and requires less storage space. Finally, the selection strategies of input length for different neural networks are suggested and the related principles are investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dan1029完成签到,获得积分10
刚刚
小王完成签到,获得积分10
刚刚
李繁蕊发布了新的文献求助10
刚刚
1秒前
1秒前
隐形曼青应助hjj采纳,获得10
1秒前
susu完成签到,获得积分10
2秒前
3秒前
caicai发布了新的文献求助10
3秒前
无情的菲鹰完成签到,获得积分10
3秒前
兔兔完成签到 ,获得积分10
3秒前
打打应助勤奋的蜗牛采纳,获得10
3秒前
4秒前
jery完成签到,获得积分10
4秒前
乐乐应助润润轩轩采纳,获得10
5秒前
指哪打哪完成签到,获得积分10
5秒前
弄井发布了新的文献求助30
6秒前
6秒前
6秒前
6秒前
6秒前
Wing完成签到 ,获得积分10
7秒前
R先生发布了新的文献求助10
7秒前
科研小白发布了新的文献求助10
7秒前
年三月完成签到 ,获得积分10
8秒前
lb完成签到,获得积分20
8秒前
8秒前
香蕉觅云应助叶飞荷采纳,获得10
9秒前
flow发布了新的文献求助10
10秒前
穆仰应助li采纳,获得10
10秒前
班尼肥鸭完成签到 ,获得积分10
10秒前
噔噔噔噔发布了新的文献求助10
10秒前
bkagyin应助ffff采纳,获得10
10秒前
000完成签到,获得积分10
10秒前
10秒前
Anxinxin发布了新的文献求助20
11秒前
11秒前
Ych完成签到,获得积分20
12秒前
lai发布了新的文献求助10
12秒前
彭彭发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762