MTT: an efficient model for encrypted network traffic classification using multi-task transformer

计算机科学 交通分类 字节 网络数据包 数据挖掘 加密 鉴定(生物学) 人工神经网络 人工智能 任务(项目管理) 机器学习 计算机网络
作者
Weiping Zheng,Jianhao Zhong,Qizhi Zhang,Gansen Zhao
出处
期刊:Applied Intelligence [Springer Science+Business Media]
标识
DOI:10.1007/s10489-021-03032-8
摘要

Network traffic classification aims to associate the network traffic with a class of traffic characterization (e.g., Streaming) or applications (e.g., Facebook). This ability plays an important role in advanced network management. The tasks of traffic characterization and application identification are usually implemented by individual models. However, when multiple models are deployed in the online environment, this causes a dramatic increase in the complexity, resource demand and maintenance costs. In this paper, an efficient multi-task learning method named multi-task transformer (MTT) is proposed. It simultaneously classifies the traffic characterization and application identification tasks. The proposed model considers the input packet as a sequence of bytes and applies a multi-head attention mechanism to extract features. Experiments are conducted on the ISCX VPN-nonVPN dataset to demonstrate the effectiveness of MTT. \(F_1\) scores of 98.75% and 99.35% have been achieved for application identification and traffic characterization, respectively. To the best of our knowledge, the results are better than the state-of-the-art results. The MTT model outputs the two results simultaneously in \(\sim\) 0.1 milliseconds (per packet), which satisfies the requirement of online traffic classification. Compared with the 1D-CNN and 2D-CNN models, the proposed MTT model is more stable, presents higher classification performance and requires less storage space. Finally, the selection strategies of input length for different neural networks are suggested and the related principles are investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
李长安完成签到,获得积分10
1秒前
机灵书雪发布了新的文献求助10
1秒前
angelinazh完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
mahaha发布了新的文献求助10
3秒前
overcome发布了新的文献求助10
3秒前
Tourist应助饭团采纳,获得10
4秒前
4秒前
000200发布了新的文献求助10
5秒前
5秒前
零琳发布了新的文献求助10
5秒前
小周周完成签到 ,获得积分10
5秒前
田様应助annie采纳,获得10
6秒前
6秒前
连大脸发布了新的文献求助30
7秒前
seko发布了新的文献求助10
7秒前
科研通AI6应助campus采纳,获得10
7秒前
充电宝应助lxy采纳,获得10
8秒前
8秒前
9秒前
所所应助kalman采纳,获得10
9秒前
9秒前
9秒前
丘比特应助harmory采纳,获得30
10秒前
踏实平彤完成签到,获得积分10
11秒前
11秒前
科研通AI5应助Sonny采纳,获得10
11秒前
州府十三完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
CipherSage应助呆萌的机器猫采纳,获得10
14秒前
14秒前
科研通AI5应助余咋采纳,获得10
14秒前
FashionBoy应助悲凉的大娘采纳,获得10
14秒前
柠栀完成签到 ,获得积分10
15秒前
州府十三发布了新的文献求助10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5113903
求助须知:如何正确求助?哪些是违规求助? 4321280
关于积分的说明 13464996
捐赠科研通 4152777
什么是DOI,文献DOI怎么找? 2275420
邀请新用户注册赠送积分活动 1277450
关于科研通互助平台的介绍 1215482