MTT: an efficient model for encrypted network traffic classification using multi-task transformer

计算机科学 交通分类 字节 网络数据包 数据挖掘 加密 鉴定(生物学) 人工神经网络 人工智能 任务(项目管理) 机器学习 计算机网络
作者
Weiping Zheng,Jianhao Zhong,Qizhi Zhang,Gansen Zhao
出处
期刊:Applied Intelligence [Springer Nature]
标识
DOI:10.1007/s10489-021-03032-8
摘要

Network traffic classification aims to associate the network traffic with a class of traffic characterization (e.g., Streaming) or applications (e.g., Facebook). This ability plays an important role in advanced network management. The tasks of traffic characterization and application identification are usually implemented by individual models. However, when multiple models are deployed in the online environment, this causes a dramatic increase in the complexity, resource demand and maintenance costs. In this paper, an efficient multi-task learning method named multi-task transformer (MTT) is proposed. It simultaneously classifies the traffic characterization and application identification tasks. The proposed model considers the input packet as a sequence of bytes and applies a multi-head attention mechanism to extract features. Experiments are conducted on the ISCX VPN-nonVPN dataset to demonstrate the effectiveness of MTT. \(F_1\) scores of 98.75% and 99.35% have been achieved for application identification and traffic characterization, respectively. To the best of our knowledge, the results are better than the state-of-the-art results. The MTT model outputs the two results simultaneously in \(\sim\) 0.1 milliseconds (per packet), which satisfies the requirement of online traffic classification. Compared with the 1D-CNN and 2D-CNN models, the proposed MTT model is more stable, presents higher classification performance and requires less storage space. Finally, the selection strategies of input length for different neural networks are suggested and the related principles are investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助luyuanchangchun采纳,获得10
刚刚
天天快乐应助131949采纳,获得10
刚刚
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
领导范儿应助cj采纳,获得10
4秒前
5秒前
5秒前
天天快乐应助ali采纳,获得10
7秒前
Lucas应助hqq采纳,获得10
8秒前
9秒前
marklee发布了新的文献求助10
9秒前
脑洞疼应助啵啵采纳,获得10
9秒前
打打应助00000采纳,获得10
10秒前
10秒前
sep完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
wuyaRY发布了新的文献求助10
14秒前
754发布了新的文献求助10
15秒前
yukaka完成签到,获得积分10
16秒前
17秒前
18秒前
苏瑾完成签到,获得积分10
18秒前
li完成签到,获得积分10
19秒前
20秒前
ding应助kido采纳,获得10
21秒前
Antibody6发布了新的文献求助10
22秒前
754完成签到,获得积分10
22秒前
22秒前
跳跃寄松完成签到,获得积分10
23秒前
研友_5Z46A5发布了新的文献求助10
24秒前
科研通AI6应助xiao_123123采纳,获得10
25秒前
钮秀发布了新的文献求助10
25秒前
爆米花应助珂珂采纳,获得10
25秒前
时间恰恰好完成签到 ,获得积分10
28秒前
猪猪hero应助ccm采纳,获得10
28秒前
脑洞疼应助kgmilan采纳,获得30
29秒前
liuguyue发布了新的文献求助10
29秒前
30秒前
浮游应助整齐的半雪采纳,获得10
32秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443296
求助须知:如何正确求助?哪些是违规求助? 4553176
关于积分的说明 14241249
捐赠科研通 4474739
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443119
关于科研通互助平台的介绍 1418742