亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MTT: an efficient model for encrypted network traffic classification using multi-task transformer

计算机科学 交通分类 字节 网络数据包 数据挖掘 加密 鉴定(生物学) 人工神经网络 人工智能 任务(项目管理) 机器学习 计算机网络
作者
Weiping Zheng,Jianhao Zhong,Qizhi Zhang,Gansen Zhao
出处
期刊:Applied Intelligence [Springer Nature]
标识
DOI:10.1007/s10489-021-03032-8
摘要

Network traffic classification aims to associate the network traffic with a class of traffic characterization (e.g., Streaming) or applications (e.g., Facebook). This ability plays an important role in advanced network management. The tasks of traffic characterization and application identification are usually implemented by individual models. However, when multiple models are deployed in the online environment, this causes a dramatic increase in the complexity, resource demand and maintenance costs. In this paper, an efficient multi-task learning method named multi-task transformer (MTT) is proposed. It simultaneously classifies the traffic characterization and application identification tasks. The proposed model considers the input packet as a sequence of bytes and applies a multi-head attention mechanism to extract features. Experiments are conducted on the ISCX VPN-nonVPN dataset to demonstrate the effectiveness of MTT. \(F_1\) scores of 98.75% and 99.35% have been achieved for application identification and traffic characterization, respectively. To the best of our knowledge, the results are better than the state-of-the-art results. The MTT model outputs the two results simultaneously in \(\sim\) 0.1 milliseconds (per packet), which satisfies the requirement of online traffic classification. Compared with the 1D-CNN and 2D-CNN models, the proposed MTT model is more stable, presents higher classification performance and requires less storage space. Finally, the selection strategies of input length for different neural networks are suggested and the related principles are investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾矜应助拒绝头秃采纳,获得10
6秒前
7秒前
8秒前
10秒前
含糊的金鱼完成签到,获得积分20
10秒前
14秒前
Ooo发布了新的文献求助10
15秒前
20秒前
所所应助含糊的金鱼采纳,获得10
22秒前
Ooo完成签到,获得积分20
25秒前
lewis发布了新的文献求助10
25秒前
28秒前
28秒前
29秒前
科研通AI2S应助Ooo采纳,获得10
30秒前
Pluto发布了新的文献求助10
34秒前
40秒前
Pluto完成签到,获得积分10
42秒前
42秒前
Chenly完成签到,获得积分10
43秒前
zhangqin发布了新的文献求助10
43秒前
44秒前
49秒前
YY发布了新的文献求助10
51秒前
52秒前
XiaoXiao发布了新的文献求助10
55秒前
su发布了新的文献求助10
58秒前
wanci应助su采纳,获得10
1分钟前
zhangqin完成签到,获得积分10
1分钟前
Grayball发布了新的文献求助30
1分钟前
木九完成签到 ,获得积分10
1分钟前
miao完成签到 ,获得积分10
1分钟前
烟花应助lewis采纳,获得10
1分钟前
仰山雪完成签到 ,获得积分10
1分钟前
星辰大海应助lewis采纳,获得10
1分钟前
1分钟前
spark810应助科研通管家采纳,获得30
1分钟前
1分钟前
AYY完成签到,获得积分10
2分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162280
求助须知:如何正确求助?哪些是违规求助? 2813284
关于积分的说明 7899607
捐赠科研通 2472592
什么是DOI,文献DOI怎么找? 1316476
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142