MTT: an efficient model for encrypted network traffic classification using multi-task transformer

计算机科学 交通分类 字节 网络数据包 数据挖掘 加密 鉴定(生物学) 人工神经网络 人工智能 任务(项目管理) 机器学习 计算机网络
作者
Weiping Zheng,Jianhao Zhong,Qizhi Zhang,Gansen Zhao
出处
期刊:Applied Intelligence [Springer Nature]
标识
DOI:10.1007/s10489-021-03032-8
摘要

Network traffic classification aims to associate the network traffic with a class of traffic characterization (e.g., Streaming) or applications (e.g., Facebook). This ability plays an important role in advanced network management. The tasks of traffic characterization and application identification are usually implemented by individual models. However, when multiple models are deployed in the online environment, this causes a dramatic increase in the complexity, resource demand and maintenance costs. In this paper, an efficient multi-task learning method named multi-task transformer (MTT) is proposed. It simultaneously classifies the traffic characterization and application identification tasks. The proposed model considers the input packet as a sequence of bytes and applies a multi-head attention mechanism to extract features. Experiments are conducted on the ISCX VPN-nonVPN dataset to demonstrate the effectiveness of MTT. \(F_1\) scores of 98.75% and 99.35% have been achieved for application identification and traffic characterization, respectively. To the best of our knowledge, the results are better than the state-of-the-art results. The MTT model outputs the two results simultaneously in \(\sim\) 0.1 milliseconds (per packet), which satisfies the requirement of online traffic classification. Compared with the 1D-CNN and 2D-CNN models, the proposed MTT model is more stable, presents higher classification performance and requires less storage space. Finally, the selection strategies of input length for different neural networks are suggested and the related principles are investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王十三发布了新的文献求助30
1秒前
1秒前
2秒前
ding应助结实的红酒采纳,获得10
3秒前
学术小透明完成签到,获得积分10
3秒前
潇洒代亦完成签到,获得积分10
3秒前
guandada完成签到,获得积分10
4秒前
领导范儿应助sdfer23采纳,获得10
4秒前
小小发布了新的文献求助10
5秒前
乐乐应助风清扬采纳,获得10
5秒前
寒冷凌瑶发布了新的文献求助10
5秒前
爆米花应助陶逸豪采纳,获得10
6秒前
ho应助xczhu采纳,获得10
7秒前
林深完成签到,获得积分10
8秒前
星辰大海应助weilao采纳,获得10
8秒前
傲娇芷容发布了新的文献求助10
8秒前
9秒前
王腾锐发布了新的文献求助10
10秒前
10秒前
10秒前
Wenyilong发布了新的文献求助10
11秒前
斯文败类应助Xangel采纳,获得10
12秒前
Cecilia_koala完成签到,获得积分10
12秒前
13秒前
王十三完成签到,获得积分10
13秒前
14秒前
14秒前
Tracy完成签到,获得积分10
15秒前
英姑应助jiqihao采纳,获得10
16秒前
16秒前
怕孤独的白竹完成签到,获得积分10
17秒前
Frank完成签到,获得积分10
17秒前
17秒前
19秒前
二九十二发布了新的文献求助10
19秒前
江觅松发布了新的文献求助30
19秒前
Jessica发布了新的文献求助10
21秒前
choiiianh发布了新的文献求助10
21秒前
FashionBoy应助wop111采纳,获得10
21秒前
LuoYR@SZU完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354986
求助须知:如何正确求助?哪些是违规求助? 4486944
关于积分的说明 13968439
捐赠科研通 4387716
什么是DOI,文献DOI怎么找? 2410452
邀请新用户注册赠送积分活动 1402979
关于科研通互助平台的介绍 1376705