已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MTT: an efficient model for encrypted network traffic classification using multi-task transformer

计算机科学 交通分类 字节 网络数据包 数据挖掘 加密 鉴定(生物学) 人工神经网络 人工智能 任务(项目管理) 机器学习 计算机网络
作者
Weiping Zheng,Jianhao Zhong,Qizhi Zhang,Gansen Zhao
出处
期刊:Applied Intelligence [Springer Nature]
标识
DOI:10.1007/s10489-021-03032-8
摘要

Network traffic classification aims to associate the network traffic with a class of traffic characterization (e.g., Streaming) or applications (e.g., Facebook). This ability plays an important role in advanced network management. The tasks of traffic characterization and application identification are usually implemented by individual models. However, when multiple models are deployed in the online environment, this causes a dramatic increase in the complexity, resource demand and maintenance costs. In this paper, an efficient multi-task learning method named multi-task transformer (MTT) is proposed. It simultaneously classifies the traffic characterization and application identification tasks. The proposed model considers the input packet as a sequence of bytes and applies a multi-head attention mechanism to extract features. Experiments are conducted on the ISCX VPN-nonVPN dataset to demonstrate the effectiveness of MTT. \(F_1\) scores of 98.75% and 99.35% have been achieved for application identification and traffic characterization, respectively. To the best of our knowledge, the results are better than the state-of-the-art results. The MTT model outputs the two results simultaneously in \(\sim\) 0.1 milliseconds (per packet), which satisfies the requirement of online traffic classification. Compared with the 1D-CNN and 2D-CNN models, the proposed MTT model is more stable, presents higher classification performance and requires less storage space. Finally, the selection strategies of input length for different neural networks are suggested and the related principles are investigated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葵花籽完成签到,获得积分10
1秒前
2秒前
友好诗霜完成签到 ,获得积分10
3秒前
Tong123完成签到,获得积分10
4秒前
Dannnn完成签到 ,获得积分10
6秒前
Milktea123完成签到,获得积分10
8秒前
8秒前
干净思远完成签到,获得积分10
9秒前
赘婿应助陨落星辰采纳,获得10
11秒前
李爱国应助聪慧的致远采纳,获得10
11秒前
Able完成签到,获得积分10
15秒前
脱锦涛完成签到 ,获得积分10
19秒前
Meyako完成签到 ,获得积分0
20秒前
21秒前
CipherSage应助hh采纳,获得10
24秒前
陨落星辰发布了新的文献求助10
25秒前
transition发布了新的文献求助10
25秒前
SciGPT应助Chloe采纳,获得10
26秒前
HJJHJH发布了新的文献求助10
27秒前
Cosmosurfer完成签到,获得积分10
31秒前
transition完成签到,获得积分10
32秒前
罗皮特完成签到 ,获得积分10
34秒前
36秒前
田様应助大宝君采纳,获得10
37秒前
38秒前
40秒前
Davidjin发布了新的文献求助10
40秒前
outlast完成签到,获得积分10
41秒前
111发布了新的文献求助10
43秒前
44秒前
善学以致用应助呵呵采纳,获得10
47秒前
宝可梦大师完成签到,获得积分10
49秒前
54秒前
56秒前
NexusExplorer应助渭禾采纳,获得10
58秒前
58秒前
酷酷问夏完成签到 ,获得积分10
59秒前
风中元瑶完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890007
捐赠科研通 4727175
什么是DOI,文献DOI怎么找? 2545923
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236