MTT: an efficient model for encrypted network traffic classification using multi-task transformer

计算机科学 交通分类 字节 网络数据包 数据挖掘 加密 鉴定(生物学) 人工神经网络 人工智能 任务(项目管理) 机器学习 计算机网络
作者
Weiping Zheng,Jianhao Zhong,Qizhi Zhang,Gansen Zhao
出处
期刊:Applied Intelligence [Springer Nature]
标识
DOI:10.1007/s10489-021-03032-8
摘要

Network traffic classification aims to associate the network traffic with a class of traffic characterization (e.g., Streaming) or applications (e.g., Facebook). This ability plays an important role in advanced network management. The tasks of traffic characterization and application identification are usually implemented by individual models. However, when multiple models are deployed in the online environment, this causes a dramatic increase in the complexity, resource demand and maintenance costs. In this paper, an efficient multi-task learning method named multi-task transformer (MTT) is proposed. It simultaneously classifies the traffic characterization and application identification tasks. The proposed model considers the input packet as a sequence of bytes and applies a multi-head attention mechanism to extract features. Experiments are conducted on the ISCX VPN-nonVPN dataset to demonstrate the effectiveness of MTT. \(F_1\) scores of 98.75% and 99.35% have been achieved for application identification and traffic characterization, respectively. To the best of our knowledge, the results are better than the state-of-the-art results. The MTT model outputs the two results simultaneously in \(\sim\) 0.1 milliseconds (per packet), which satisfies the requirement of online traffic classification. Compared with the 1D-CNN and 2D-CNN models, the proposed MTT model is more stable, presents higher classification performance and requires less storage space. Finally, the selection strategies of input length for different neural networks are suggested and the related principles are investigated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liuying2809发布了新的文献求助10
刚刚
gejinxin给gejinxin的求助进行了留言
1秒前
1秒前
彭于晏应助美满的红酒采纳,获得10
1秒前
彭于晏应助毛健采纳,获得10
1秒前
善学以致用应助JunHan采纳,获得10
2秒前
跳跃发布了新的文献求助10
2秒前
2秒前
黄凯发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
6秒前
Shan发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
充电宝应助zzzz采纳,获得10
8秒前
9秒前
bunny发布了新的文献求助10
9秒前
12秒前
13秒前
JunHan发布了新的文献求助10
13秒前
shlin完成签到,获得积分10
14秒前
14秒前
zz应助摸鱼大王采纳,获得10
15秒前
猪猪hero应助摸鱼大王采纳,获得10
15秒前
wanci应助hh采纳,获得10
15秒前
Owen应助周周采纳,获得10
16秒前
xy820完成签到,获得积分20
17秒前
Shan完成签到,获得积分10
18秒前
天天学习完成签到,获得积分10
19秒前
Zer完成签到,获得积分0
19秒前
19秒前
20秒前
zzzzzz完成签到,获得积分10
20秒前
xy820发布了新的文献求助10
20秒前
21秒前
科研通AI6.1应助深情素阴采纳,获得10
21秒前
22秒前
打打应助小怪兽不吃人采纳,获得10
22秒前
科研通AI6.1应助bunny采纳,获得10
23秒前
风吃掉月亮完成签到,获得积分10
24秒前
风趣绯完成签到,获得积分20
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742790
求助须知:如何正确求助?哪些是违规求助? 5410347
关于积分的说明 15345735
捐赠科研通 4883864
什么是DOI,文献DOI怎么找? 2625403
邀请新用户注册赠送积分活动 1574207
关于科研通互助平台的介绍 1531165