Predicting Neurological Deterioration after Moderate Traumatic Brain Injury: Development and Validation of a Prediction Model Based on Data Collected on Admission

列线图 创伤性脑损伤 置信区间 医学 逐步回归 自举(财务) 格拉斯哥昏迷指数 格拉斯哥结局量表 损伤严重程度评分 毒物控制 逻辑回归 急诊医学 内科学 伤害预防 外科 精神科 金融经济学 经济
作者
Mingsheng Chen,Zhihong Li,Zhifeng Yan,Shunnan Ge,Yongbing Zhang,Haigui Yang,Lanfu Zhao,Lingyu Liu,Xingye Zhang,Yaning Cai,Yan Qu
出处
期刊:Journal of Neurotrauma [Mary Ann Liebert, Inc.]
卷期号:39 (5-6): 371-378 被引量:16
标识
DOI:10.1089/neu.2021.0360
摘要

Moderate traumatic brain injury (mTBI) is a heterogeneous entity that is poorly defined in the literature. Patients with mTBI have a high rate of neurological deterioration (ND), which is usually accompanied by poor prognosis and no definitive methods to predict. The purpose of this study is to develop and validate a prediction model that estimates the ND risk in patients with mTBI using data collected on admission. Data for 479 patients with mTBI collected retrospectively in our department were analyzed by logistic regression models. Bivariable logistic regression identified variables with a p < 0.05. Multi-variable logistic regression modeling with backward stepwise elimination was used to determine reduced parameters and establish a prediction model. The discrimination efficacy, calibration efficacy, and clinical utility of the prediction model were evaluated. The prediction model was validated using data for 176 patients collected from another hospital. Eight independent prognostic factors were identified: hypertension, Marshall scale (types III and IV), subdural hemorrhage (SDH), location of contusion (frontal and temporal contusions), Injury Severity Score >13, D-dimer level >11.4 mg/L, Glasgow Coma Scale score ≤10, and platelet count ≤152 × 109/L. A prediction model was established and was shown as a nomogram. Using bootstrapping, internal validation showed that the C-statistic of the prediction model was 0.881 (95% confidence interval [CI]: 0.849-0.909). The results of external validation showed that the nomogram could predict ND with an area under the curve of 0.827 (95% CI: 0.763-0.880). The present model, based on simple parameters collected on admission, can predict the risk of ND in patients with mTBI accurately. The high discriminative ability indicates the potential of this model for classifying patients with mTBI according to ND risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助媛媛采纳,获得10
1秒前
3秒前
biofresh发布了新的文献求助10
3秒前
3秒前
John完成签到 ,获得积分10
5秒前
难过冷玉完成签到,获得积分10
5秒前
高兴的小完成签到,获得积分10
5秒前
DXY发布了新的文献求助10
7秒前
bzd完成签到 ,获得积分10
7秒前
7秒前
7秒前
8R60d8应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
character577完成签到 ,获得积分10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
64658应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
搞怪莫茗应助科研通管家采纳,获得50
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得20
9秒前
漂亮的秋天完成签到,获得积分10
10秒前
宫旭尧发布了新的文献求助10
10秒前
gt完成签到,获得积分10
15秒前
852应助才下眉头采纳,获得10
16秒前
Hongtauo发布了新的文献求助10
16秒前
16秒前
贱小贱完成签到,获得积分10
16秒前
细雨带风吹完成签到,获得积分10
16秒前
共享精神应助1234采纳,获得10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962882
求助须知:如何正确求助?哪些是违规求助? 3508809
关于积分的说明 11143356
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579