A Lightweight Complex-Valued DeepLabv3+ for Semantic Segmentation of PolSAR Image

过度拟合 计算机科学 分割 人工智能 模式识别(心理学) 图像分割 尺度空间分割 像素 计算机视觉 基于分割的对象分类 人工神经网络
作者
Lingjuan Yu,Zhaoxin Zeng,Ao Liu,Xiaochun Xie,Haipeng Wang,Feng Xu,Wen Hong
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 930-943 被引量:40
标识
DOI:10.1109/jstars.2021.3140101
摘要

Semantic image segmentation is one kindof end-to-end segmentation method which can classify the target region pixel by pixel. As a classic semantic segmentation network in optical images, DeepLabv3+ can achieve a good segmentation performance. However, when this network is directly used in the semantic segmentation of polarimetric synthetic aperture radar (PolSAR) image, it is hard to obtain the ideal segmentation results. The reason is that it is easy to yield overfitting due to the small PolSAR dataset. In this article, a lightweight complex-valued DeepLabv3+ (L-CV-DeepLabv3+) is proposed for semantic segmentation of PolSAR data. It has two significant advantages when compared with the original DeepLabv3+. First, the proposed network with the simplified structure and parameters can be suitable for the small PolSAR data, and thus, it can effectively avoid the overfitting. Second, the proposed complex-valued (CV) network can make full use of both amplitude and phase information of PolSAR data, which brings better segmentation performance than the real-valued (RV) network, and the related CV operations are strictly true in the mathematical sense. Experimental results about two Flevoland datasets and one San Francisco dataset show that the proposed network can obtain better overall average, mean intersection over union, and mean pixel accuracy than the original DeepLabv3+ and some other RV semantic segmentation networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HOME完成签到,获得积分10
刚刚
bkagyin应助虚幻的小海豚采纳,获得10
刚刚
852应助皇甫成采纳,获得10
1秒前
1秒前
kiwi发布了新的文献求助30
1秒前
君子兰发布了新的文献求助10
1秒前
隐形曼青应助suda采纳,获得10
2秒前
zedmaster完成签到,获得积分10
2秒前
吴静发布了新的文献求助10
2秒前
科目三应助闫晓美采纳,获得10
2秒前
小小完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
舒适的泽洋完成签到,获得积分10
3秒前
小包完成签到,获得积分10
4秒前
zhangyan发布了新的文献求助10
4秒前
5秒前
lal完成签到 ,获得积分10
5秒前
FF完成签到,获得积分20
5秒前
5秒前
小熊出击发布了新的文献求助10
6秒前
PlanB完成签到,获得积分20
6秒前
6秒前
7秒前
小二郎应助梁晓雪采纳,获得10
8秒前
8秒前
9秒前
pgojpogk发布了新的文献求助10
9秒前
zxh发布了新的文献求助10
9秒前
共享精神应助JF123_采纳,获得10
10秒前
10秒前
李木槿发布了新的文献求助10
10秒前
好好应助天月采纳,获得10
10秒前
无花果应助甩看文献采纳,获得10
10秒前
123456完成签到,获得积分10
11秒前
君子兰完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919