Machine Learning-Based Approaches for Prediction of Patients’ Functional Outcome and Mortality after Spontaneous Intracerebral Hemorrhage

医学 脑出血 逻辑回归 改良兰金量表 接收机工作特性 死亡率 内科学
作者
Rui Guo,Renjie Zhang,Ran Liu,Yi Liu,Hao Li,Lu Ma,Min He,Chao You,Rui Tian
出处
期刊:Journal of Personalized Medicine [MDPI AG]
卷期号:12 (1): 112-112 被引量:12
标识
DOI:10.3390/jpm12010112
摘要

Spontaneous intracerebral hemorrhage (SICH) has been common in China with high morbidity and mortality rates. This study aims to develop a machine learning (ML)-based predictive model for the 90-day evaluation after SICH. We retrospectively reviewed 751 patients with SICH diagnosis and analyzed clinical, radiographic, and laboratory data. A modified Rankin scale (mRS) of 0-2 was defined as a favorable functional outcome, while an mRS of 3-6 was defined as an unfavorable functional outcome. We evaluated 90-day functional outcome and mortality to develop six ML-based predictive models and compared their efficacy with a traditional risk stratification scale, the intracerebral hemorrhage (ICH) score. The predictive performance was evaluated by the areas under the receiver operating characteristic curves (AUC). A total of 553 patients (73.6%) reached the functional outcome at the 3rd month, with the 90-day mortality rate of 10.2%. Logistic regression (LR) and logistic regression CV (LRCV) showed the best predictive performance for functional outcome (AUC = 0.890 and 0.887, respectively), and category boosting presented the best predictive performance for the mortality (AUC = 0.841). Therefore, ML might be of potential assistance in the prediction of the prognosis of SICH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
俊逸幻柏发布了新的文献求助10
1秒前
十三完成签到,获得积分10
1秒前
金发大猪脚完成签到,获得积分20
1秒前
1秒前
阿榆关注了科研通微信公众号
2秒前
颖中竹子发布了新的文献求助10
2秒前
脑洞疼应助冷傲可仁采纳,获得10
3秒前
Xin完成签到,获得积分10
3秒前
哒哒完成签到,获得积分10
4秒前
study发布了新的文献求助10
4秒前
可爱的函函应助AlleynY采纳,获得10
4秒前
Yelgna完成签到,获得积分20
5秒前
努力发1区发布了新的文献求助10
5秒前
5秒前
嘟嘟许完成签到,获得积分10
5秒前
李健应助Shine采纳,获得10
6秒前
sukiyaki完成签到,获得积分10
6秒前
lixiao发布了新的文献求助50
7秒前
烂漫代曼完成签到 ,获得积分10
7秒前
爆米花应助sususuper采纳,获得10
7秒前
海清完成签到 ,获得积分10
7秒前
无花果应助糊涂的大象采纳,获得10
7秒前
成金陈发布了新的文献求助10
8秒前
8秒前
frank发布了新的文献求助10
8秒前
寒冷鹏煊完成签到,获得积分10
9秒前
村北头小可爱完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
专注代秋完成签到 ,获得积分10
11秒前
开心材料人完成签到,获得积分20
11秒前
FashionBoy应助三六九采纳,获得10
12秒前
12秒前
12秒前
12秒前
长生发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309103
求助须知:如何正确求助?哪些是违规求助? 2942468
关于积分的说明 8508989
捐赠科研通 2617498
什么是DOI,文献DOI怎么找? 1430174
科研通“疑难数据库(出版商)”最低求助积分说明 664072
邀请新用户注册赠送积分活动 649239