Synthetic FLAIR as a Substitute for FLAIR Sequence in Acute Ischemic Stroke

流体衰减反转恢复 医学 麦克内马尔试验 放射科 核医学 再现性 磁共振成像 四分位间距 一致性 内科学 数学 统计
作者
Joseph Benzakoun,Marc-Antoine Deslys,Laurence Legrand,Ghazi Hmeydia,Guillaume Turc,Wagih Ben Hassen,Sylvain Charron,Clément Debacker,Olivier Naggara,Jean‐Claude Baron,Bertrand Thirion,Catherine Oppenheim
出处
期刊:Radiology [Radiological Society of North America]
卷期号:303 (1): 153-159 被引量:16
标识
DOI:10.1148/radiol.211394
摘要

Background In acute ischemic stroke (AIS), fluid-attenuated inversion recovery (FLAIR) is used for treatment decisions when onset time is unknown. Synthetic FLAIR could be generated with deep learning from information embedded in diffusion-weighted imaging (DWI) and could replace acquired FLAIR sequence (real FLAIR) and shorten MRI duration. Purpose To compare performance of synthetic and real FLAIR for DWI-FLAIR mismatch estimation and identification of patients presenting within 4.5 hours from symptom onset. Materials and Methods In this retrospective study, all pretreatment and early follow-up (<48 hours after symptom onset) MRI data sets including DWI (b = 0-1000 sec/mm2) and FLAIR sequences obtained in consecutive patients with AIS referred for reperfusion therapies between January 2002 and May 2019 were included. On the training set (80%), a generative adversarial network was trained to produce synthetic FLAIR with DWI as input. On the test set (20%), synthetic FLAIR was computed without real FLAIR knowledge. The DWI-FLAIR mismatch was evaluated on both FLAIR data sets by four independent readers. Interobserver reproducibility and DWI-FLAIR mismatch concordance between synthetic and real FLAIR were evaluated with κ statistics. Sensitivity and specificity for identification of AIS within 4.5 hours were compared in patients with known onset time by using McNemar test. Results The study included 1416 MRI scans (861 patients; median age, 71 years [interquartile range, 57-81 years]; 375 men), yielding 1134 and 282 scans for training and test sets, respectively. Regarding DWI-FLAIR mismatch, interobserver reproducibility was substantial for real and synthetic FLAIR (κ = 0.80 [95% CI: 0.74, 0.87] and 0.80 [95% CI: 0.74, 0.87], respectively). After consensus, concordance between real and synthetic FLAIR was almost perfect (κ = 0.88; 95% CI: 0.82, 0.93). Diagnostic value for identifying AIS within 4.5 hours did not differ between real and synthetic FLAIR (sensitivity: 107 of 131 [82%] vs 111 of 131 [85%], P = .2; specificity: 96 of 104 [92%] vs 96 of 104 [92%], respectively, P > .99). Conclusion Synthetic fluid-attenuated inversion recovery (FLAIR) had diagnostic performances similar to real FLAIR in depicting diffusion-weighted imaging-FLAIR mismatch and in helping to identify early acute ischemic stroke, and it may accelerate MRI protocols. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Carroll and Hurley in this issue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whisper完成签到,获得积分10
刚刚
1秒前
ddy完成签到,获得积分10
1秒前
宝铭YUAN完成签到,获得积分10
1秒前
侯赛雷完成签到,获得积分10
1秒前
1秒前
厄尔尼诺完成签到,获得积分10
2秒前
嗯嗯的嗯嗯完成签到,获得积分10
2秒前
荷戟执子手完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
柳煜城完成签到,获得积分10
2秒前
科研小陈完成签到,获得积分10
2秒前
圭璋完成签到,获得积分10
3秒前
Amosummer完成签到,获得积分10
3秒前
3秒前
杨天天完成签到 ,获得积分0
3秒前
III完成签到,获得积分10
4秒前
chen完成签到,获得积分10
4秒前
吃颗电池发布了新的文献求助10
4秒前
呵呵呵呵完成签到,获得积分10
4秒前
天天快乐应助天雨流芳采纳,获得10
4秒前
5秒前
曾经的借过完成签到,获得积分10
5秒前
6秒前
密西西比he完成签到,获得积分10
6秒前
LINHAI完成签到,获得积分10
7秒前
李伟完成签到,获得积分10
7秒前
leishenwang完成签到,获得积分10
7秒前
7秒前
Ronin完成签到,获得积分10
8秒前
112发布了新的文献求助10
9秒前
9秒前
9秒前
Akim应助YQQ采纳,获得10
9秒前
Zhang完成签到 ,获得积分10
9秒前
Sandy11完成签到,获得积分10
10秒前
落雪慕卿颜完成签到,获得积分10
10秒前
小满完成签到,获得积分10
10秒前
陈明娃完成签到,获得积分10
10秒前
Pendulium完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645317
求助须知:如何正确求助?哪些是违规求助? 4768461
关于积分的说明 15028063
捐赠科研通 4803918
什么是DOI,文献DOI怎么找? 2568536
邀请新用户注册赠送积分活动 1525881
关于科研通互助平台的介绍 1485508