MIXED COVARIANCE FUNCTION KRIGING MODEL FOR UNCERTAINTY QUANTIFICATION

克里金 协方差 基函数 协方差函数 数学 不确定度量化 数学优化 超参数 协方差矩阵 多项式的 应用数学 限制最大似然 功能(生物学) 计算机科学 算法 统计 估计理论 数学分析 进化生物学 生物
作者
Kai Cheng,Zhenzhou Lü,Sinan Xiao,Sergey Oladyshkin,Wolfgang Nowak
出处
期刊:International Journal for Uncertainty Quantification [Begell House]
卷期号:12 (3): 17-30 被引量:2
标识
DOI:10.1615/int.j.uncertaintyquantification.2021035851
摘要

In this paper, we develop a mixed covariance function Kriging (MCF-Kriging) model for uncertainty quantification. The mixed covariance function is a linear combination of a traditional stationary covariance function and a nonsta-tionary covariance function constructed by the inner product of orthonormal polynomial basis functions. We use a weight matrix to control the contribution of each polynomial basis to the whole model representation, and a trade-off parameter is used to balance the contribution of the two different covariance functions. The optimal values of these model hyperparameters are obtained through an iterative algorithm derived by maximum likelihood estimation (MLE), and sparse representation is achieved automatically in the MLE step by removing the basis functions with small contribution. Additionally, the hyperparameters of stationary covariance function are tuned by minimizing the leave-one-out cross-validation error of the surrogate model. For validation, we investigate three benchmark test functions with different dimensionalities, and compare the accuracy and efficiency with the state-of-art sequential PC-Kriging and optimal PC-Kriging models. The results show that the MCF-Kriging model provides comparable performance compared to the two PC-Kriging models for nonlinear problems, that are moderate and even high-dimensional. Finally, we apply our model to a heat conduction problem to demonstrate its effectiveness in engineering application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
执葵发布了新的文献求助10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得30
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
热切菩萨应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
咔咔完成签到 ,获得积分10
刚刚
慕青应助mue采纳,获得10
刚刚
璨澄发布了新的文献求助10
1秒前
3秒前
6秒前
思源应助明天开始戒绿茶采纳,获得10
7秒前
8秒前
9秒前
俭朴的又菡完成签到,获得积分10
9秒前
小苹果发布了新的文献求助10
9秒前
大洋洋完成签到,获得积分10
9秒前
HKY发布了新的文献求助10
10秒前
12秒前
12秒前
东木应助执葵采纳,获得20
14秒前
AlwaysKim发布了新的文献求助10
14秒前
14秒前
15秒前
FashionBoy应助涵泽采纳,获得10
15秒前
mue发布了新的文献求助10
17秒前
17秒前
噜噜晓发布了新的文献求助10
17秒前
18秒前
科研通AI2S应助CC采纳,获得10
19秒前
21秒前
顾矜应助duxiao采纳,获得10
21秒前
一切顺利完成签到,获得积分10
22秒前
23秒前
houfei发布了新的文献求助10
23秒前
张国柱完成签到,获得积分10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382