In-situ pressure-induced BiVO4/Bi0.6Y0.4VO4 S-scheme heterojunction for enhanced photocatalytic overall water splitting activity

异质结 材料科学 光催化 钒酸铋 四方晶系 单斜晶系 分解水 纳米棒 煅烧 化学工程 热液循环 表面光电压 光电子学 纳米技术 相(物质) 化学 晶体结构 催化作用 光谱学 结晶学 工程类 物理 量子力学 有机化学 生物化学
作者
Weiqi Guo,Haolin Luo,Zhi Jiang,Wenfeng Shangguan
出处
期刊:Chinese Journal of Catalysis [China Science Publishing & Media Ltd.]
卷期号:43 (2): 316-328 被引量:43
标识
DOI:10.1016/s1872-2067(21)63846-9
摘要

Step-scheme (S-scheme) heterojunctions in photocatalysts can provide novel and practical insight on promoting photogenerated carrier separation. The latter is critical in controlling the overall efficiency in one-step photoexcitation systems. In this study, a nanosized Bi0.6Y0.4VO4 solid solution was prepared by a coprecipitation method following with hydrothermal or calcination processes. The S-scheme heterojunction was fabricated by in-situ pressure-induced transformations of bismuth vanadate from the tetragonal zircon phase to the monoclinic scheelite phase, which led to the formation of BiVO4 nanoparticles with a diameter of approximately 5 nm on the surface of Bi0.6Y0.4VO4. Bi0.6Y0.4VO4 with S-scheme heterojunctions showed significantly enhanced photocatalytic overall water splitting activity compared with using bare Bi0.6Y0.4VO4. Characterization of the carrier dynamics demonstrated that a superior carrier separation through S-type heterojunctions might have caused the enhanced overall water splitting (OWS) activity. Surface photovoltage spectra and the results of selective photodeposition experiments indicated that the photogenerated holes mainly migrated to the BiVO4 nanoparticles in the heterojunction. This confirmed that the charge transfer route corresponds to an S-scheme rather than a type-II heterojunction mechanism under light illumination. This study presents a facile and efficient strategy to construct S-scheme heterojunctions through a pressure-induced phase transition. The results demonstrated that S-scheme junctions composed of different crystalline phases can boost the carrier separation capacity and eventually improve the photocatalytic OWS activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111发布了新的文献求助10
刚刚
1秒前
药学牛马完成签到,获得积分10
1秒前
张zi发布了新的文献求助10
2秒前
yatou5651发布了新的文献求助10
3秒前
3秒前
小魏不学无术完成签到,获得积分10
3秒前
木棉发布了新的文献求助10
3秒前
A1234发布了新的文献求助10
4秒前
英俊的铭应助弄井采纳,获得30
4秒前
小二郎应助Dean采纳,获得10
5秒前
故意的冰淇淋完成签到 ,获得积分10
5秒前
5秒前
远方完成签到,获得积分10
6秒前
kiminonawa完成签到,获得积分0
7秒前
zrz完成签到,获得积分10
7秒前
8秒前
传奇3应助morlison采纳,获得10
8秒前
11秒前
11秒前
12秒前
13秒前
乐呀完成签到,获得积分10
13秒前
木头人呐完成签到 ,获得积分10
13秒前
小马甲应助吴岳采纳,获得10
13秒前
天天向上赶完成签到,获得积分10
13秒前
整齐的凡梦完成签到,获得积分10
14秒前
孙冉冉发布了新的文献求助10
15秒前
MHB应助towerman采纳,获得10
16秒前
Dean发布了新的文献求助10
16秒前
17秒前
加油加油发布了新的文献求助10
17秒前
lili完成签到 ,获得积分10
18秒前
文剑武书生完成签到,获得积分10
19秒前
科研通AI5应助无限鞅采纳,获得10
19秒前
19秒前
852应助木棉采纳,获得10
19秒前
20秒前
卓哥完成签到,获得积分10
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808