Recipe for a General, Powerful, Scalable Graph Transformer

计算机科学 可扩展性 理论计算机科学 建筑 模块化设计 图形 变压器 程序设计语言 艺术 数据库 电压 视觉艺术 物理 量子力学
作者
Ladislav Rampášek,Mikhail Galkin,Vijay Prakash Dwivedi,Anh Tuan Luu,Guy Wolf,Dominique Beaini
出处
期刊:Cornell University - arXiv 被引量:110
标识
DOI:10.48550/arxiv.2205.12454
摘要

We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph Transformers (GTs) have gained popularity in the field of graph representation learning with a variety of recent publications but they lack a common foundation about what constitutes a good positional or structural encoding, and what differentiates them. In this paper, we summarize the different types of encodings with a clearer definition and categorize them as being $\textit{local}$, $\textit{global}$ or $\textit{relative}$. The prior GTs are constrained to small graphs with a few hundred nodes, here we propose the first architecture with a complexity linear in the number of nodes and edges $O(N+E)$ by decoupling the local real-edge aggregation from the fully-connected Transformer. We argue that this decoupling does not negatively affect the expressivity, with our architecture being a universal function approximator on graphs. Our GPS recipe consists of choosing 3 main ingredients: (i) positional/structural encoding, (ii) local message-passing mechanism, and (iii) global attention mechanism. We provide a modular framework $\textit{GraphGPS}$ that supports multiple types of encodings and that provides efficiency and scalability both in small and large graphs. We test our architecture on 16 benchmarks and show highly competitive results in all of them, show-casing the empirical benefits gained by the modularity and the combination of different strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速靖琪发布了新的文献求助10
1秒前
mmr发布了新的文献求助10
2秒前
静然完成签到 ,获得积分10
3秒前
abcdefg发布了新的文献求助10
6秒前
8秒前
8秒前
香蕉觅云应助闪闪的发夹采纳,获得10
11秒前
研友_Zl1Da8完成签到,获得积分10
11秒前
Akim应助suonik采纳,获得30
12秒前
霍华淞发布了新的文献求助10
12秒前
英俊的咖啡豆完成签到 ,获得积分10
13秒前
14秒前
ding应助努力生活的兔子采纳,获得10
14秒前
15秒前
16秒前
Ava应助霍华淞采纳,获得10
17秒前
18秒前
19秒前
20秒前
yiling完成签到,获得积分10
20秒前
梓然完成签到,获得积分10
21秒前
GGbound发布了新的文献求助10
21秒前
23秒前
淳于白凝完成签到,获得积分10
23秒前
24秒前
yiling发布了新的文献求助10
24秒前
彭于晏应助浔xxx采纳,获得10
25秒前
26秒前
草莓味哒Pooh完成签到,获得积分10
27秒前
27秒前
SciGPT应助小狗不是抠脚兵采纳,获得10
27秒前
29秒前
小小叶发布了新的文献求助10
30秒前
李爱国应助小小元风采纳,获得10
31秒前
开朗的蝴蝶完成签到,获得积分20
31秒前
努力生活的兔子完成签到,获得积分0
33秒前
a雪橙完成签到 ,获得积分10
34秒前
34秒前
34秒前
duanhuiyuan完成签到,获得积分0
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993454
求助须知:如何正确求助?哪些是违规求助? 3534113
关于积分的说明 11264719
捐赠科研通 3273986
什么是DOI,文献DOI怎么找? 1806200
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662