Collaborative Decision-Reinforced Self-Supervision for Attributed Graph Clustering

计算机科学 自编码 聚类分析 图形 机器学习 人工智能 特征学习 数据挖掘 理论计算机科学 人工神经网络
作者
Pengfei Zhu,Jialu Li,Yu Wang,Bin Xiao,Shuai Zhao,Qinghua Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 10851-10863 被引量:18
标识
DOI:10.1109/tnnls.2022.3171583
摘要

Attributed graph clustering aims to partition nodes of a graph structure into different groups. Recent works usually use variational graph autoencoder (VGAE) to make the node representations obey a specific distribution. Although they have shown promising results, how to introduce supervised information to guide the representation learning of graph nodes and improve clustering performance is still an open problem. In this article, we propose a Collaborative Decision-Reinforced Self-Supervision (CDRS) method to solve the problem, in which a pseudo node classification task collaborates with the clustering task to enhance the representation learning of graph nodes. First, a transformation module is used to enable end-to-end training of existing methods based on VGAE. Second, the pseudo node classification task is introduced into the network through multitask learning to make classification decisions for graph nodes. The graph nodes that have consistent decisions on clustering and pseudo node classification are added to a pseudo-label set, which can provide fruitful self-supervision for subsequent training. This pseudo-label set is gradually augmented during training, thus reinforcing the generalization capability of the network. Finally, we investigate different sorting strategies to further improve the quality of the pseudo-label set. Extensive experiments on multiple datasets show that the proposed method achieves outstanding performance compared with state-of-the-art methods. Our code is available at https://github.com/Jillian555/TNNLS_CDRS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
面包完成签到,获得积分10
刚刚
魏骜琦发布了新的文献求助10
1秒前
1秒前
wujiao发布了新的文献求助10
2秒前
Wind发布了新的文献求助10
3秒前
木头完成签到,获得积分10
3秒前
shencheng完成签到,获得积分10
3秒前
3秒前
lizike完成签到,获得积分10
3秒前
橙子完成签到,获得积分10
3秒前
顾暖完成签到,获得积分10
4秒前
Zhanghh87应助xiaowang采纳,获得10
5秒前
5秒前
柏林寒冬应助稳重傲柔采纳,获得10
5秒前
zy3637完成签到,获得积分10
5秒前
6秒前
pencil123完成签到,获得积分10
6秒前
lelelele完成签到,获得积分10
6秒前
Anyemzl完成签到,获得积分10
7秒前
濮阳元正发布了新的文献求助10
7秒前
zpf完成签到,获得积分10
7秒前
MT完成签到 ,获得积分10
7秒前
8秒前
wujiao完成签到,获得积分10
8秒前
缓慢易云完成签到,获得积分20
8秒前
善学以致用应助PsyQin采纳,获得10
8秒前
一路向南发布了新的文献求助10
9秒前
该换手机完成签到,获得积分20
9秒前
NexusExplorer应助无限黎云采纳,获得10
9秒前
紫薯球完成签到,获得积分10
9秒前
10秒前
10秒前
无花果应助bunny采纳,获得10
10秒前
11秒前
11秒前
11秒前
poke完成签到,获得积分10
12秒前
搞怪远侵发布了新的文献求助10
12秒前
濮阳元正完成签到,获得积分10
12秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016558
求助须知:如何正确求助?哪些是违规求助? 3556732
关于积分的说明 11322479
捐赠科研通 3289455
什么是DOI,文献DOI怎么找? 1812490
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812074