亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimal disc brake design for reducing squeal instability using slip-dependent complex eigenvalue analysis

不稳定性 盘式制动器 控制理论(社会学) 制动器 打滑(空气动力学) 优化设计 临界制动 滑移角 特征向量 工程类 汽车工程 计算机科学 机械 物理 航空航天工程 控制(管理) 量子力学 人工智能 机器学习
作者
Jung-Ro Yoon,Joosang Park,Seungjae Min
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:177: 109240-109240 被引量:3
标识
DOI:10.1016/j.ymssp.2022.109240
摘要

This paper proposes an improved disc brake system optimization method for squeal instability reduction using slip-dependent eigenvalue results. Although complex eigenvalue analysis is widely used for minimizing brake squeal instability, conventional optimization approaches still have the limitation of not being able to reflect slip rate-varying squeal instability characteristics. While relative angular velocity between the pad and disc declines due to braking, disc brake system instability gradually increases up to a specific peak velocity point and decreases until the vehicle stops, which means a maximum instability point exists during the braking process. Therefore, instability optimization should target the prevention of a maximum value during a braking scenario. The proposed optimization formulation is conducted considering maximum instability during full braking. To obtain braking time profiles, a model-based design method is employed and utilized instead of full finite element transient dynamic analysis to reduce computational cost. Kriging surrogate modeling is also used for solving the optimization problem and better express the multi-variable squeal problem. The proposed optimal design method produces minimal squeal instability during the full vehicle braking time range. The effectiveness of the proposed disc brake optimal design is demonstrated via acceleration power value comparison of the structure acceleration with that derived by conventional optimization approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助陈媛采纳,获得10
42秒前
章鱼完成签到,获得积分10
52秒前
3分钟前
陈媛发布了新的文献求助10
3分钟前
kuoping完成签到,获得积分10
3分钟前
5分钟前
PD完成签到,获得积分10
5分钟前
5分钟前
6分钟前
义气的书雁完成签到,获得积分10
6分钟前
7分钟前
andrele发布了新的文献求助10
7分钟前
谦也静熵完成签到,获得积分10
8分钟前
通科研完成签到 ,获得积分10
8分钟前
10分钟前
andrele发布了新的文献求助10
10分钟前
陈媛发布了新的文献求助10
11分钟前
sasa发布了新的文献求助10
11分钟前
sasa完成签到,获得积分10
11分钟前
满地枫叶完成签到,获得积分20
12分钟前
joanna完成签到,获得积分10
12分钟前
满地枫叶发布了新的文献求助10
12分钟前
12分钟前
M先生完成签到,获得积分10
12分钟前
12分钟前
13分钟前
tlx发布了新的文献求助10
13分钟前
13分钟前
13分钟前
13分钟前
14分钟前
14分钟前
小圆圈发布了新的文献求助30
14分钟前
兴奋的宛亦完成签到,获得积分20
14分钟前
zhanglongfei发布了新的文献求助10
14分钟前
14分钟前
小圆圈发布了新的文献求助10
14分钟前
15分钟前
小圆圈发布了新的文献求助10
15分钟前
李健的小迷弟应助小圆圈采纳,获得10
15分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846050
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757