Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials

纳米技术 过程(计算) 回顾性分析 自组装 计算机科学 系统工程 材料科学 生化工程 工程类 全合成 化学 有机化学 操作系统
作者
Anish Rao,Sumit Roy,Vanshika Jain,Pramod P. Pillai
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (21): 25248-25274 被引量:65
标识
DOI:10.1021/acsami.2c05378
摘要

The creation of matter with varying degrees of complexities and desired functions is one of the ultimate targets of self-assembly. The ability to regulate the complex interactions between the individual components is essential in achieving this target. In this direction, the initial success of controlling the pathways and final thermodynamic states of a self-assembly process is promising. Despite the progress made in the field, there has been a growing interest in pushing the limits of self-assembly processes. The main inception of this interest is that the intended self-assembled state, with varying complexities, may not be "at equilibrium (or at global minimum)", rendering free energy minimization unsuitable to form the desired product. Thus, we believe that a thorough understanding of the design principles as well as the ability to predict the outcome of a self-assembly process is essential to form a collection of the next generation of complex matter. The present review highlights the potent role of finely tuned interparticle interactions in nanomaterials to achieve the preferred self-assembled structures with the desired properties. We believe that bringing the design and prediction to nanoparticle self-assembly processes will have a similar effect as retrosynthesis had on the logic of chemical synthesis. Along with the guiding principles, the review gives a summary of the different types of products created from nanoparticle assemblies and the functional properties emerging from them. Finally, we highlight the reasonable expectations from the field and the challenges lying ahead in the creation of complex and evolvable matter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
布喜娅玛拉完成签到,获得积分10
2秒前
3秒前
3秒前
科研通AI5应助binbin采纳,获得10
3秒前
4秒前
123qwe完成签到,获得积分10
4秒前
4秒前
5秒前
liuwenjie应助你终硕采纳,获得10
6秒前
6秒前
6秒前
我爱乒乓球完成签到,获得积分10
7秒前
辰月贰拾给辰月贰拾的求助进行了留言
9秒前
刘青发布了新的文献求助10
9秒前
沉默如豹发布了新的文献求助10
9秒前
10秒前
阿比盖尔发布了新的文献求助10
10秒前
11秒前
科研通AI5应助李志全采纳,获得10
11秒前
13秒前
13秒前
15秒前
16秒前
a2271559577发布了新的文献求助10
17秒前
Lucas应助等待世平采纳,获得20
17秒前
科研通AI5应助xiaoguaiyaonulix采纳,获得10
18秒前
杨奇定完成签到,获得积分10
19秒前
可爱山彤发布了新的文献求助10
19秒前
19秒前
bd应助懦弱的难敌采纳,获得10
19秒前
NexusExplorer应助大水牛采纳,获得20
20秒前
21秒前
香蕉觅云应助研友_LwM4GZ采纳,获得10
21秒前
酷波er应助超速也文章采纳,获得10
22秒前
22秒前
科研通AI5应助无情飞雪采纳,获得10
22秒前
23秒前
天天快乐应助细心的语蓉采纳,获得10
23秒前
gb2312完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560850
求助须知:如何正确求助?哪些是违规求助? 3134690
关于积分的说明 9408852
捐赠科研通 2834921
什么是DOI,文献DOI怎么找? 1558291
邀请新用户注册赠送积分活动 728047
科研通“疑难数据库(出版商)”最低求助积分说明 716678