已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hyperspectral imaging and machine learning in food microbiology: Developments and challenges in detection of bacterial, fungal, and viral contaminants

高光谱成像 生化工程 污染 环境科学 食品微生物学 食物腐败 食品安全 生物技术 计算机科学 人工智能 生物 食品科学 生态学 细菌 工程类 遗传学
作者
Aswathi Soni,Yash Dixit,Marlon M. Reis,Gale Brightwell
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:21 (4): 3717-3745 被引量:57
标识
DOI:10.1111/1541-4337.12983
摘要

Abstract Hyperspectral imaging (HSI) is a robust and nondestructive method that can detect foreign particles such as microbial, chemical, and physical contamination in food. This review summarizes the work done in the last two decades in this field with a highlight on challenges, risks, and research gaps. Considering the challenges of using HSI on complex matrices like food (e.g., the confounding and masking effects of background signals), application of machine learning and modeling approaches that have been successful in achieving better accuracy as well as increasing the detection limit have also been discussed here. Foodborne microbial contaminants such as bacteria, fungi, viruses, yeast, and protozoa are of interest and concern to food manufacturers due to the potential risk of either food poisoning or food spoilage. Detection of these contaminants using fast and efficient methods would not only prevent outbreaks and recalls but will also increase consumer acceptance and demand for shelf‐stable food products. The conventional culture‐based methods for microbial detection are time and labor‐intensive, whereas hyperspectral imaging (HSI) is robust, nondestructive with minimum sample preparation, and has gained significant attention due to its rapid approach to detection of microbial contaminants. This review is a comprehensive summary of the detection of bacterial, viral, and fungal contaminants in food with detailed emphasis on the specific modeling and datamining approaches used to overcome the specific challenges associated with background and data complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
正直画笔完成签到 ,获得积分10
4秒前
4秒前
zx完成签到,获得积分10
5秒前
5秒前
kydd发布了新的文献求助10
6秒前
lzu关注了科研通微信公众号
8秒前
wlh123发布了新的文献求助10
10秒前
10秒前
10秒前
dara应助蓝白啦采纳,获得10
11秒前
liuwenjie应助蓝白啦采纳,获得10
11秒前
脑洞疼应助蓝白啦采纳,获得10
11秒前
13秒前
後zgw完成签到,获得积分10
14秒前
14秒前
跳跳虎发布了新的文献求助10
14秒前
风一样的男子完成签到,获得积分10
14秒前
汉堡包应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
DrDaiJune应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得50
16秒前
16秒前
pluto应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
elisa828发布了新的文献求助10
17秒前
YAW关注了科研通微信公众号
17秒前
所所应助孙严青采纳,获得10
17秒前
shaung yang完成签到,获得积分10
18秒前
酷酷朋友完成签到,获得积分10
18秒前
20秒前
楚襄谷发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Effects of surfactant concentration on the microstructures of TiO2 hollow spheres by hydrothermal method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561630
求助须知:如何正确求助?哪些是违规求助? 3135215
关于积分的说明 9411529
捐赠科研通 2835748
什么是DOI,文献DOI怎么找? 1558583
邀请新用户注册赠送积分活动 728383
科研通“疑难数据库(出版商)”最低求助积分说明 716806