已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Coupled Heterogeneous Tucker Decomposition: A Feature Extraction Method for Multisource Fusion and Domain Adaptation Using Multisource Heterogeneous Remote Sensing Data

计算机科学 加权 模式识别(心理学) 特征提取 域适应 人工智能 约束(计算机辅助设计) 数据挖掘 传感器融合 稳健性(进化) 数学 分类器(UML) 放射科 基因 医学 化学 生物化学 几何学
作者
Tong Gao,Hao Chen,Junhong Lu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (11): 2553-2553 被引量:2
标识
DOI:10.3390/rs14112553
摘要

To excavate adequately the rich information contained in multisource remote sensing data, feature extraction as basic yet important research has two typical applications: one of which is to extract complementary information of multisource data to improve classification; and the other is to extract shared information across sources for domain adaptation. However, typical feature extraction methods require the input represented as vectors or homogeneous tensors and fail to process multisource data represented as heterogeneous tensors. Therefore, the coupled heterogeneous Tucker decomposition (C-HTD) containing two sub-methods, namely coupled factor matrix-based HTD (CFM-HTD) and coupled core tensor-based HTD (CCT-HTD), is proposed to establish a unified feature extraction framework for multisource fusion and domain adaptation. To handle multisource heterogeneous tensors, multiple Tucker models were constructed to extract features of different sources separately. To cope with the supervised and semi-supervised cases, the class-indicator factor matrix was built to enhance the separability of features using known labels and learned labels. To mine the complementarity of paired multisource samples, coupling constraint was imposed on multiple factor matrices to form CFM-HTD to extract multisource information jointly. To extract domain-adapted features, coupling constraint was imposed on multiple core tensors to form CCT-HTD to encourage data from different sources to have the same class centroid. In addition, to reduce the impact of interference samples on domain adaptation, an adaptive sample-weighting matrix was designed to autonomously remove outliers. Using multiresolution multiangle optical and MSTAR datasets, experimental results show that the C-HTD outperforms typical multisource fusion and domain adaptation methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzl完成签到 ,获得积分10
刚刚
xx完成签到 ,获得积分10
刚刚
mia完成签到,获得积分10
刚刚
whykm91完成签到 ,获得积分10
1秒前
大模型应助正破采纳,获得10
4秒前
minnie完成签到 ,获得积分10
5秒前
开心每一天完成签到 ,获得积分10
6秒前
贵哥完成签到,获得积分10
6秒前
6秒前
6秒前
李健的小迷弟应助miku1采纳,获得10
8秒前
10秒前
10秒前
Coldpal完成签到,获得积分10
10秒前
善良元芹完成签到 ,获得积分10
11秒前
11秒前
nannan发布了新的文献求助10
11秒前
薛wen晶完成签到 ,获得积分10
12秒前
12秒前
shuang完成签到 ,获得积分10
13秒前
苍鹭完成签到,获得积分10
13秒前
小V完成签到,获得积分10
14秒前
15秒前
MENG完成签到 ,获得积分10
15秒前
文明8完成签到,获得积分10
17秒前
yaya完成签到,获得积分10
18秒前
昏睡的英姑完成签到,获得积分10
18秒前
xmx完成签到 ,获得积分10
19秒前
19秒前
Research完成签到 ,获得积分10
20秒前
平常安雁完成签到 ,获得积分10
20秒前
miku1发布了新的文献求助10
21秒前
zhangshenlan发布了新的文献求助10
21秒前
MENG关注了科研通微信公众号
21秒前
二牛完成签到,获得积分10
21秒前
机灵哈密瓜完成签到,获得积分10
23秒前
yiren完成签到 ,获得积分10
23秒前
orixero应助一切随风采纳,获得10
23秒前
nannan完成签到,获得积分10
24秒前
桃子爱学习完成签到 ,获得积分10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526413
求助须知:如何正确求助?哪些是违规求助? 3106796
关于积分的说明 9281568
捐赠科研通 2804333
什么是DOI,文献DOI怎么找? 1539416
邀请新用户注册赠送积分活动 716549
科研通“疑难数据库(出版商)”最低求助积分说明 709520