Multiphasic CT-Based Radiomics Analysis for the Differentiation of Benign and Malignant Parotid Tumors

特征选择 人工智能 Lasso(编程语言) 接收机工作特性 无线电技术 判别式 支持向量机 计算机科学 机器学习 特征(语言学) 医学 特征提取 放射科 逻辑回归 模式识别(心理学) 万维网 哲学 语言学
作者
Qiang Yu,Anran Wang,Jinming Gu,Quanjiang Li,Youquan Ning,Juan Peng,Fajin Lv,Xiaodi Zhang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:5
标识
DOI:10.3389/fonc.2022.913898
摘要

Objective This study aims to investigate the value of machine learning models based on clinical-radiological features and multiphasic CT radiomics features in the differentiation of benign parotid tumors (BPTs) and malignant parotid tumors (MPTs). Methods This retrospective study included 312 patients (205 cases of BPTs and 107 cases of MPTs) who underwent multiphasic enhanced CT examinations, which were randomly divided into training ( N = 218) and test ( N = 94) sets. The radiomics features were extracted from the plain, arterial, and venous phases. The synthetic minority oversampling technique was used to balance minority class samples in the training set. Feature selection methods were done using the least absolute shrinkage and selection operator (LASSO), mutual information (MI), and recursive feature extraction (RFE). Two machine learning classifiers, support vector machine (SVM), and logistic regression (LR), were then combined in pairs with three feature selection methods to build different radiomics models. Meanwhile, the prediction performances of different radiomics models based on single phase (plain, arterial, and venous phase) and multiphase (three-phase combination) were compared to determine which model construction method and phase were more discriminative. In addition, clinical models based on clinical-radiological features and combined models integrating radiomics features and clinical-radiological features were established. The prediction performances of the different models were evaluated by the area under the receiver operating characteristic (ROC) curve (AUC) and the drawing of calibration curves. Results Among the 24 established radiomics models composed of four different phases, three feature selection methods, and two machine learning classifiers, the LASSO-SVM model based on a three-phase combination had the optimal prediction performance with AUC (0.936 [95% CI = 0.866, 0.976]), sensitivity (0.78), specificity (0.90), and accuracy (0.86) in the test set, and its prediction performance was significantly better than with the clinical model based on LR (AUC = 0.781, p = 0.012). In the test set, the combined model based on LR had a lower AUC than the optimal radiomics model (AUC = 0.933 vs. 0.936), but no statistically significant difference ( p = 0.888). Conclusion Multiphasic CT-based radiomics analysis showed a machine learning model based on clinical-radiological features and radiomics features has the potential to provide a valuable tool for discriminating benign from malignant parotid tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助公主抡大锤采纳,获得10
1秒前
1秒前
博修发布了新的文献求助10
4秒前
lucas完成签到,获得积分10
4秒前
Tiger完成签到,获得积分10
6秒前
MLJ完成签到 ,获得积分10
6秒前
挡住所有坏运气888完成签到,获得积分10
6秒前
blutte发布了新的文献求助10
7秒前
9秒前
走之完成签到,获得积分10
10秒前
11秒前
晓倩发布了新的文献求助10
14秒前
genomed应助科研通管家采纳,获得10
15秒前
15秒前
genomed应助科研通管家采纳,获得10
15秒前
qq应助科研通管家采纳,获得20
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
罗_应助科研通管家采纳,获得20
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
四季豆完成签到 ,获得积分10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
16秒前
Siliconeoil完成签到,获得积分10
17秒前
无花果应助MOMO采纳,获得10
18秒前
18秒前
还单身的若蕊完成签到,获得积分10
18秒前
的微博发布了新的文献求助10
20秒前
付创完成签到,获得积分10
22秒前
平凡的七月完成签到,获得积分10
24秒前
26秒前
28秒前
野原完成签到,获得积分20
30秒前
Daisy发布了新的文献求助10
30秒前
饱满的小霜完成签到,获得积分20
30秒前
cxm完成签到,获得积分10
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242601
求助须知:如何正确求助?哪些是违规求助? 2886899
关于积分的说明 8245228
捐赠科研通 2555424
什么是DOI,文献DOI怎么找? 1383482
科研通“疑难数据库(出版商)”最低求助积分说明 649722
邀请新用户注册赠送积分活动 625605