A deep learning-based image processing method for bubble detection, segmentation, and shape reconstruction in high gas holdup sub-millimeter bubbly flows

气泡 毫米 棱锥(几何) 阴影照相术 极高频率 图像处理 材料科学 特征(语言学) 分割 人工智能 光学 计算机科学 机械 物理 图像(数学) 激光器 语言学 哲学
作者
Yizhou Cui,Chengxiang Li,Wanli Zhang,Xiaoqi Ning,Xiaogang Shi,Jinsen Gao,Xingying Lan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:449: 137859-137859 被引量:19
标识
DOI:10.1016/j.cej.2022.137859
摘要

The sub-millimeter bubble technique can enhance the gas–liquid inter-phase mass transfer by significantly reducing the bubble size and increasing the gas–liquid interfacial area. To accurately describe the flow and mass transfer characteristics, it is necessary to characterize bubble parameters. High-speed photography followed by image processing is an effective way to characterize the gas bubbles in the multiphase flows. However, the efficient image processing method for the sub-millimeter bubbly flows with high gas holdup and high bubble overlap has not been reported yet. The present work developed a novel deep learning-based image processing method for bubble detection, segmentation, and shape reconstruction in high gas holdup sub-millimeter bubbly flows. In order to segment the highly overlapping sub-millimeter bubbles, our method was built based on Mask R-CNN, with which the pixel-level segmentation masks can be obtained, and the shape of the overlapping bubbles can be accurately described. The feature pyramid architecture was coupled with ResNet101 and Feature Pyramid Network to detect sub-millimeter bubbles with significant size differences. A shape reconstruction module was proposed to restore the real shape of overlapping bubbles and improve prediction accuracy. In order to sufficiently validate the proposed method, adequate images of sub-millimeter bubbly flows were obtained by changing the experimental media (air-tap water, air-sodium dodecyl sulphate aqueous solution, air-diesel, and air-diesel-fine catalyst particles), reactor configurations (3D beds and 2D beds), lenses, and photography (shadowgraphy and front illumination). Our method shows high accuracy under the experimental conditions and can process sub-millimeter bubble images under gas holdup up to 20%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分20
刚刚
Wells发布了新的文献求助10
1秒前
满满的都是橙汁完成签到,获得积分10
1秒前
美丽完成签到 ,获得积分10
1秒前
英勇的鱼发布了新的文献求助10
1秒前
2秒前
小张完成签到,获得积分10
2秒前
鸽鸽发布了新的文献求助10
2秒前
ElbingX发布了新的文献求助30
3秒前
李博士发布了新的文献求助30
3秒前
3秒前
高兴的安阳完成签到,获得积分10
3秒前
Hello应助xuan采纳,获得20
4秒前
123发布了新的文献求助30
4秒前
alan完成签到 ,获得积分10
4秒前
xx完成签到 ,获得积分10
4秒前
5秒前
YH完成签到,获得积分20
5秒前
科研小白完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
吕培森完成签到 ,获得积分20
8秒前
戈惜发布了新的文献求助10
8秒前
Lucas应助林大壮采纳,获得10
8秒前
一只大肥猫完成签到,获得积分10
8秒前
Orange应助彩色橘子采纳,获得10
9秒前
英俊的雁易完成签到,获得积分10
9秒前
巴啦啦能量完成签到,获得积分10
9秒前
斯文败类应助孤舟采纳,获得10
10秒前
小马甲应助lijiajun采纳,获得10
11秒前
俏皮易绿完成签到 ,获得积分10
11秒前
乐乐应助zz采纳,获得10
11秒前
cloudyick发布了新的文献求助10
11秒前
11秒前
有光光光光光光完成签到,获得积分10
11秒前
B_snow发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143314
求助须知:如何正确求助?哪些是违规求助? 2794476
关于积分的说明 7811257
捐赠科研通 2450676
什么是DOI,文献DOI怎么找? 1303944
科研通“疑难数据库(出版商)”最低求助积分说明 627160
版权声明 601386