Smart Scheduling of Electric Vehicles Based on Reinforcement Learning

调度(生产过程) 强化学习 计算机科学 排队论 充电站 电动汽车 互操作性 实时计算 运筹学 TRIPS体系结构 运输工程 工程类 计算机网络 人工智能 运营管理 功率(物理) 物理 量子力学 并行计算 操作系统
作者
Andrei Viziteu,Daniel Furtună,Andrei Robu,Stelian Senocico,Petru Cioată,Marian Remus Baltariu,Constantin Filote,Maria Simona Răboacă
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (10): 3718-3718 被引量:12
标识
DOI:10.3390/s22103718
摘要

As the policies and regulations currently in place concentrate on environmental protection and greenhouse gas reduction, we are steadily witnessing a shift in the transportation industry towards electromobility. There are, though, several issues that need to be addressed to encourage the adoption of EVs on a larger scale, starting from enhancing the network interoperability and accessibility and removing the uncertainty associated with the availability of charging stations. Another issue is of particular interest for EV drivers travelling longer distances and is related to scheduling a recharging operation at the estimated time of arrival, without long queuing times. To this end, we propose a solution capable of addressing multiple EV charging scheduling issues, such as congestion management, scheduling a charging station in advance, and allowing EV drivers to plan optimized long trips using their EVs. The smart charging scheduling system we propose considers a variety of factors such as battery charge level, trip distance, nearby charging stations, other appointments, and average speed. Given the scarcity of data sets required to train the Reinforcement Learning algorithms, the novelty of the recommended solution lies in the scenario simulator, which generates the labelled datasets needed to train the algorithm. Based on the generated scenarios, we created and trained a neural network that uses a history of previous situations to identify the optimal charging station and time interval for recharging. The results are promising and for future work we are planning to train the DQN model using real-world data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
郝好月完成签到,获得积分10
1秒前
1秒前
monoklatt完成签到,获得积分10
1秒前
壹零零柒完成签到 ,获得积分10
1秒前
杨多多发布了新的文献求助10
2秒前
CodeCraft应助hihi采纳,获得10
2秒前
eagle发布了新的文献求助10
2秒前
如意的酒窝完成签到,获得积分10
2秒前
xwx完成签到,获得积分10
3秒前
薄荷完成签到,获得积分20
3秒前
充电宝应助jzx采纳,获得10
3秒前
爱学习的小凌完成签到,获得积分10
3秒前
ganxie完成签到,获得积分10
3秒前
4秒前
4秒前
FashionBoy应助飞云采纳,获得10
4秒前
阿水关注了科研通微信公众号
4秒前
z182052237发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
华仔应助baibaibai采纳,获得10
7秒前
Hale完成签到,获得积分0
7秒前
活力亦瑶完成签到,获得积分10
8秒前
ganxie发布了新的文献求助20
8秒前
余闻问完成签到,获得积分10
8秒前
大个应助包笑白采纳,获得10
8秒前
8秒前
社会主义接班人完成签到,获得积分10
8秒前
HHH完成签到 ,获得积分10
9秒前
9秒前
marg应助xiaofeng采纳,获得10
10秒前
11秒前
11秒前
星辰大海应助当当采纳,获得10
11秒前
淡然的水蓝完成签到 ,获得积分10
12秒前
12秒前
13秒前
亓大大完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661487
求助须知:如何正确求助?哪些是违规求助? 3222499
关于积分的说明 9746283
捐赠科研通 2932184
什么是DOI,文献DOI怎么找? 1605480
邀请新用户注册赠送积分活动 757926
科研通“疑难数据库(出版商)”最低求助积分说明 734579