控制理论(社会学)
非线性系统
跟踪误差
趋同(经济学)
迭代学习控制
约束(计算机辅助设计)
计算机科学
迭代法
功能(生物学)
李雅普诺夫函数
自适应控制
执行机构
数学
数学优化
控制(管理)
人工智能
几何学
物理
生物
进化生物学
经济
量子力学
经济增长
作者
Genfeng Liu,Zhongsheng Hou
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2022-06-29
卷期号:35 (2): 1735-1749
被引量:11
标识
DOI:10.1109/tnnls.2022.3185080
摘要
This article presents an adaptive iterative learning fault-tolerant control algorithm for state constrained nonlinear systems with randomly varying iteration lengths subjected to actuator faults. First, the modified parameters updating laws are designed through a new defined tracking error to handle the randomly varying iteration lengths. Second, the radial basis function neural network method is used to deal with the time-iteration-dependent unknown nonlinearity, and a barrier Lyapunov function is given to cope with the state constraint. Finally, a new barrier composite energy function is used to achieve the tracking error convergence of the presented control algorithm along the iteration axis with the state constraint and then followed with the extension to the high-order case. A simulation for a single-link manipulator is given to illustrate the effectiveness of the theoretical studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI