Non-invasive prediction of microsatellite instability in colorectal cancer by a genetic algorithm–enhanced artificial neural network–based CT radiomics signature

微卫星不稳定性 医学 逻辑回归 无线电技术 结直肠癌 阶段(地层学) 肿瘤科 神经组阅片室 特征选择 人工智能 内科学 算法 癌症 放射科 计算机科学 微卫星 神经学 生物 精神科 古生物学 基因 等位基因 生物化学
作者
Xiaobo Chen,Lan He,Qingshu Li,Liu Liu,Suyun Li,Yuan Zhang,Zaiyi Liu,Yanqi Huang,Yun Mao,Xin Chen
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (1): 11-22 被引量:23
标识
DOI:10.1007/s00330-022-08954-6
摘要

ObjectiveThe stratification of microsatellite instability (MSI) status assists clinicians in making treatment decisions for colorectal cancer (CRC) patients. This study aimed to establish a CT-based radiomics signature to predict MSI status in patients with CRC.MethodsA total of 837 CRC patients who underwent preoperative enhanced CT and had available MSI status data were recruited from two hospitals. Radiomics features were extracted from segmented tumours, and a series of data balancing and feature selection strategies were used to select MSI-related features. Finally, an MSI-related radiomics signature was constructed using a genetic algorithm–enhanced artificial neural network model. Combined and clinical models were constructed using multivariate logistic regression analyses by integrating the clinical factors with or without the signature. A Kaplan–Meier survival analysis was conducted to explore the prognostic information of the signature in patients with CRC.ResultsTen features were selected to construct a signature which showed robust performance in both the internal and external validation cohorts, with areas under the curves (AUC) of 0.788 and 0.775, respectively. The performance of the signature was comparable to that of the combined model (AUCs of 0.777 and 0.767, respectively) and it outperformed the clinical model constituting age and tumour location (AUCs of 0.768 and 0.623, respectively). Survival analysis demonstrated that the signature could stratify patients with stage II CRC according to prognosis (HR: 0.402, p = 0.029).ConclusionsThis study built a robust radiomics signature for identifying the MSI status of CRC patients, which may assist individualised treatment decisions.Key Points • Our well-designed modelling strategies helped overcome the problem of data imbalance caused by the low incidence of MSI. • Genetic algorithm–enhanced artificial neural network–based CT radiomics signature can effectively distinguish the MSI status of CRC patients. • Kaplan–Meier survival analysis demonstrated that our signature could significantly stratify stage II CRC patients into high- and low-risk groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早日毕业完成签到 ,获得积分10
刚刚
2秒前
king2580完成签到,获得积分20
2秒前
李琦发布了新的文献求助10
2秒前
星业辰完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
duang完成签到,获得积分10
3秒前
自由天荷完成签到,获得积分10
3秒前
Jenny发布了新的文献求助10
4秒前
4秒前
香蕉觅云应助Jankin采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
77发布了新的文献求助10
5秒前
广广广渠路完成签到,获得积分10
5秒前
叶叶叶完成签到,获得积分10
5秒前
Owen应助杨震采纳,获得30
6秒前
7秒前
KAGUYA发布了新的文献求助20
7秒前
嘻哈哈完成签到,获得积分10
7秒前
独特伟泽完成签到,获得积分10
8秒前
JamesPei应助明亮谷波采纳,获得10
8秒前
8秒前
9秒前
爱学习的憨憨鸭完成签到,获得积分10
9秒前
9秒前
qiuwuji完成签到,获得积分10
11秒前
Victoria发布了新的文献求助10
11秒前
12秒前
gfgDADA发布了新的文献求助10
12秒前
Orange应助apong采纳,获得10
13秒前
13秒前
orixero应助Leslie采纳,获得10
13秒前
14秒前
14秒前
GQL发布了新的文献求助10
14秒前
lanminghao完成签到 ,获得积分10
14秒前
酷波er应助小花猫采纳,获得10
14秒前
瓶子发布了新的文献求助10
16秒前
16秒前
ding应助mark707采纳,获得10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743234
求助须知:如何正确求助?哪些是违规求助? 5413106
关于积分的说明 15347071
捐赠科研通 4884098
什么是DOI,文献DOI怎么找? 2625582
邀请新用户注册赠送积分活动 1574482
关于科研通互助平台的介绍 1531345