Non-invasive prediction of microsatellite instability in colorectal cancer by a genetic algorithm–enhanced artificial neural network–based CT radiomics signature

微卫星不稳定性 医学 逻辑回归 无线电技术 结直肠癌 阶段(地层学) 肿瘤科 神经组阅片室 特征选择 人工智能 内科学 算法 癌症 放射科 计算机科学 微卫星 神经学 生物 精神科 古生物学 基因 等位基因 生物化学
作者
Xiaobo Chen,Lan He,Qingshu Li,Liu Liu,Suyun Li,Yuan Zhang,Zaiyi Liu,Yanqi Huang,Yun Mao,Xin Chen
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (1): 11-22 被引量:23
标识
DOI:10.1007/s00330-022-08954-6
摘要

ObjectiveThe stratification of microsatellite instability (MSI) status assists clinicians in making treatment decisions for colorectal cancer (CRC) patients. This study aimed to establish a CT-based radiomics signature to predict MSI status in patients with CRC.MethodsA total of 837 CRC patients who underwent preoperative enhanced CT and had available MSI status data were recruited from two hospitals. Radiomics features were extracted from segmented tumours, and a series of data balancing and feature selection strategies were used to select MSI-related features. Finally, an MSI-related radiomics signature was constructed using a genetic algorithm–enhanced artificial neural network model. Combined and clinical models were constructed using multivariate logistic regression analyses by integrating the clinical factors with or without the signature. A Kaplan–Meier survival analysis was conducted to explore the prognostic information of the signature in patients with CRC.ResultsTen features were selected to construct a signature which showed robust performance in both the internal and external validation cohorts, with areas under the curves (AUC) of 0.788 and 0.775, respectively. The performance of the signature was comparable to that of the combined model (AUCs of 0.777 and 0.767, respectively) and it outperformed the clinical model constituting age and tumour location (AUCs of 0.768 and 0.623, respectively). Survival analysis demonstrated that the signature could stratify patients with stage II CRC according to prognosis (HR: 0.402, p = 0.029).ConclusionsThis study built a robust radiomics signature for identifying the MSI status of CRC patients, which may assist individualised treatment decisions.Key Points • Our well-designed modelling strategies helped overcome the problem of data imbalance caused by the low incidence of MSI. • Genetic algorithm–enhanced artificial neural network–based CT radiomics signature can effectively distinguish the MSI status of CRC patients. • Kaplan–Meier survival analysis demonstrated that our signature could significantly stratify stage II CRC patients into high- and low-risk groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助panpan采纳,获得30
刚刚
刚刚
纸鸢完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
mio发布了新的文献求助10
2秒前
CodeCraft应助夏微凉采纳,获得10
2秒前
匿名发布了新的文献求助10
2秒前
清爽的胡萝卜完成签到 ,获得积分10
2秒前
4秒前
5秒前
5秒前
6秒前
搜集达人应助闽哥采纳,获得10
6秒前
钰L发布了新的文献求助10
6秒前
不发脾气多发文章完成签到,获得积分10
7秒前
Dksido完成签到,获得积分10
7秒前
天下、发布了新的文献求助10
8秒前
9秒前
脑洞疼应助竹萧采纳,获得30
9秒前
显灵鸡屎果完成签到,获得积分10
9秒前
lucky发布了新的文献求助10
10秒前
小胡完成签到,获得积分10
10秒前
dajing完成签到,获得积分10
10秒前
3D发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
科研通AI2S应助5shui采纳,获得10
14秒前
Jasper应助5shui采纳,获得10
14秒前
14秒前
14秒前
15秒前
彭于晏应助追寻依风采纳,获得10
15秒前
荤素搭配完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
夏微凉发布了新的文献求助10
17秒前
斯人发布了新的文献求助10
18秒前
开心青旋完成签到,获得积分10
19秒前
19秒前
华仔应助天下、采纳,获得30
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769838
求助须知:如何正确求助?哪些是违规求助? 5581810
关于积分的说明 15422799
捐赠科研通 4903452
什么是DOI,文献DOI怎么找? 2638206
邀请新用户注册赠送积分活动 1586102
关于科研通互助平台的介绍 1541215