Non-invasive prediction of microsatellite instability in colorectal cancer by a genetic algorithm–enhanced artificial neural network–based CT radiomics signature

微卫星不稳定性 医学 逻辑回归 无线电技术 结直肠癌 阶段(地层学) 肿瘤科 神经组阅片室 特征选择 人工智能 内科学 算法 癌症 放射科 计算机科学 微卫星 神经学 生物 精神科 古生物学 基因 等位基因 生物化学
作者
Xiaobo Chen,Lan He,Qingshu Li,Liu Liu,Suyun Li,Yuan Zhang,Zaiyi Liu,Yanqi Huang,Yun Mao,Xin Chen
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (1): 11-22 被引量:15
标识
DOI:10.1007/s00330-022-08954-6
摘要

ObjectiveThe stratification of microsatellite instability (MSI) status assists clinicians in making treatment decisions for colorectal cancer (CRC) patients. This study aimed to establish a CT-based radiomics signature to predict MSI status in patients with CRC.MethodsA total of 837 CRC patients who underwent preoperative enhanced CT and had available MSI status data were recruited from two hospitals. Radiomics features were extracted from segmented tumours, and a series of data balancing and feature selection strategies were used to select MSI-related features. Finally, an MSI-related radiomics signature was constructed using a genetic algorithm–enhanced artificial neural network model. Combined and clinical models were constructed using multivariate logistic regression analyses by integrating the clinical factors with or without the signature. A Kaplan–Meier survival analysis was conducted to explore the prognostic information of the signature in patients with CRC.ResultsTen features were selected to construct a signature which showed robust performance in both the internal and external validation cohorts, with areas under the curves (AUC) of 0.788 and 0.775, respectively. The performance of the signature was comparable to that of the combined model (AUCs of 0.777 and 0.767, respectively) and it outperformed the clinical model constituting age and tumour location (AUCs of 0.768 and 0.623, respectively). Survival analysis demonstrated that the signature could stratify patients with stage II CRC according to prognosis (HR: 0.402, p = 0.029).ConclusionsThis study built a robust radiomics signature for identifying the MSI status of CRC patients, which may assist individualised treatment decisions.Key Points • Our well-designed modelling strategies helped overcome the problem of data imbalance caused by the low incidence of MSI. • Genetic algorithm–enhanced artificial neural network–based CT radiomics signature can effectively distinguish the MSI status of CRC patients. • Kaplan–Meier survival analysis demonstrated that our signature could significantly stratify stage II CRC patients into high- and low-risk groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WTT完成签到,获得积分20
刚刚
刚刚
苹果煎饼发布了新的文献求助10
刚刚
yan发布了新的文献求助10
刚刚
云肜发布了新的文献求助30
刚刚
Hello应助FatDanny采纳,获得10
1秒前
斯文败类应助娜行采纳,获得10
1秒前
庄小因完成签到,获得积分10
1秒前
热心市民小刘给热心市民小刘的求助进行了留言
1秒前
小钟完成签到,获得积分10
1秒前
徐慕源发布了新的文献求助10
1秒前
2秒前
深情安青应助任医生采纳,获得10
2秒前
2秒前
sherrinford完成签到,获得积分10
2秒前
科研通AI2S应助VDC采纳,获得10
3秒前
YAOYAO发布了新的文献求助10
3秒前
舒适豌豆完成签到,获得积分10
3秒前
Amber应助reck采纳,获得10
3秒前
Renhong完成签到,获得积分10
4秒前
5秒前
桐桐应助咕噜仔采纳,获得10
5秒前
季宇完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助大脸妹采纳,获得10
6秒前
AA发布了新的文献求助10
7秒前
7秒前
7秒前
小二郎应助小喵采纳,获得10
8秒前
8秒前
stt发布了新的文献求助10
8秒前
9秒前
Oak完成签到 ,获得积分10
9秒前
9秒前
lyy完成签到 ,获得积分10
9秒前
10秒前
Anne应助fancy采纳,获得10
10秒前
10秒前
研友_汪老头完成签到,获得积分10
10秒前
雪花君完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678