Non-invasive prediction of microsatellite instability in colorectal cancer by a genetic algorithm–enhanced artificial neural network–based CT radiomics signature

微卫星不稳定性 医学 逻辑回归 无线电技术 结直肠癌 阶段(地层学) 肿瘤科 神经组阅片室 特征选择 人工智能 内科学 算法 癌症 放射科 计算机科学 微卫星 神经学 生物 精神科 古生物学 基因 等位基因 生物化学
作者
Xiaobo Chen,Lan He,Qingshu Li,Liu Liu,Suyun Li,Yuan Zhang,Zaiyi Liu,Yanqi Huang,Yun Mao,Xin Chen
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (1): 11-22 被引量:23
标识
DOI:10.1007/s00330-022-08954-6
摘要

ObjectiveThe stratification of microsatellite instability (MSI) status assists clinicians in making treatment decisions for colorectal cancer (CRC) patients. This study aimed to establish a CT-based radiomics signature to predict MSI status in patients with CRC.MethodsA total of 837 CRC patients who underwent preoperative enhanced CT and had available MSI status data were recruited from two hospitals. Radiomics features were extracted from segmented tumours, and a series of data balancing and feature selection strategies were used to select MSI-related features. Finally, an MSI-related radiomics signature was constructed using a genetic algorithm–enhanced artificial neural network model. Combined and clinical models were constructed using multivariate logistic regression analyses by integrating the clinical factors with or without the signature. A Kaplan–Meier survival analysis was conducted to explore the prognostic information of the signature in patients with CRC.ResultsTen features were selected to construct a signature which showed robust performance in both the internal and external validation cohorts, with areas under the curves (AUC) of 0.788 and 0.775, respectively. The performance of the signature was comparable to that of the combined model (AUCs of 0.777 and 0.767, respectively) and it outperformed the clinical model constituting age and tumour location (AUCs of 0.768 and 0.623, respectively). Survival analysis demonstrated that the signature could stratify patients with stage II CRC according to prognosis (HR: 0.402, p = 0.029).ConclusionsThis study built a robust radiomics signature for identifying the MSI status of CRC patients, which may assist individualised treatment decisions.Key Points • Our well-designed modelling strategies helped overcome the problem of data imbalance caused by the low incidence of MSI. • Genetic algorithm–enhanced artificial neural network–based CT radiomics signature can effectively distinguish the MSI status of CRC patients. • Kaplan–Meier survival analysis demonstrated that our signature could significantly stratify stage II CRC patients into high- and low-risk groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zyxhaian完成签到,获得积分10
1秒前
花生四烯酸完成签到 ,获得积分10
2秒前
王高兴完成签到,获得积分10
3秒前
行云流水完成签到,获得积分10
4秒前
英俊枫完成签到,获得积分0
6秒前
ffff完成签到,获得积分10
6秒前
9秒前
王十二完成签到 ,获得积分10
9秒前
muxc完成签到,获得积分10
9秒前
笑对人生完成签到 ,获得积分10
10秒前
ph完成签到 ,获得积分10
10秒前
siiifang完成签到 ,获得积分10
10秒前
神勇马里奥完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
14秒前
jmx完成签到,获得积分10
14秒前
15秒前
甜甜醉波完成签到,获得积分10
15秒前
innocent完成签到,获得积分10
16秒前
与岁年完成签到 ,获得积分10
17秒前
Xu完成签到,获得积分10
19秒前
CHANG完成签到 ,获得积分10
19秒前
391X小king发布了新的文献求助10
20秒前
英吉利25发布了新的文献求助30
21秒前
22秒前
雨小科完成签到 ,获得积分10
22秒前
明时完成签到,获得积分10
24秒前
细心天德完成签到,获得积分10
25秒前
小千完成签到,获得积分10
25秒前
单薄松鼠完成签到 ,获得积分10
25秒前
素歌发布了新的文献求助10
26秒前
相由心生完成签到,获得积分10
26秒前
zzzzzyq完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
39秒前
pangminmin完成签到,获得积分10
41秒前
绝活中投完成签到 ,获得积分10
41秒前
monlyly完成签到 ,获得积分10
41秒前
小事完成签到 ,获得积分10
42秒前
白枫完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651484
求助须知:如何正确求助?哪些是违规求助? 4784866
关于积分的说明 15053891
捐赠科研通 4810115
什么是DOI,文献DOI怎么找? 2572963
邀请新用户注册赠送积分活动 1528850
关于科研通互助平台的介绍 1487869