亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-invasive prediction of microsatellite instability in colorectal cancer by a genetic algorithm–enhanced artificial neural network–based CT radiomics signature

微卫星不稳定性 医学 逻辑回归 无线电技术 结直肠癌 阶段(地层学) 肿瘤科 神经组阅片室 特征选择 人工智能 内科学 算法 癌症 放射科 计算机科学 微卫星 神经学 生物 精神科 等位基因 古生物学 基因 生物化学
作者
Xiaobo Chen,Lan He,Qingshu Li,Liu Liu,Suyun Li,Yuan Zhang,Zaiyi Liu,Yanqi Huang,Yun Mao,Xin Chen
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (1): 11-22 被引量:14
标识
DOI:10.1007/s00330-022-08954-6
摘要

ObjectiveThe stratification of microsatellite instability (MSI) status assists clinicians in making treatment decisions for colorectal cancer (CRC) patients. This study aimed to establish a CT-based radiomics signature to predict MSI status in patients with CRC.MethodsA total of 837 CRC patients who underwent preoperative enhanced CT and had available MSI status data were recruited from two hospitals. Radiomics features were extracted from segmented tumours, and a series of data balancing and feature selection strategies were used to select MSI-related features. Finally, an MSI-related radiomics signature was constructed using a genetic algorithm–enhanced artificial neural network model. Combined and clinical models were constructed using multivariate logistic regression analyses by integrating the clinical factors with or without the signature. A Kaplan–Meier survival analysis was conducted to explore the prognostic information of the signature in patients with CRC.ResultsTen features were selected to construct a signature which showed robust performance in both the internal and external validation cohorts, with areas under the curves (AUC) of 0.788 and 0.775, respectively. The performance of the signature was comparable to that of the combined model (AUCs of 0.777 and 0.767, respectively) and it outperformed the clinical model constituting age and tumour location (AUCs of 0.768 and 0.623, respectively). Survival analysis demonstrated that the signature could stratify patients with stage II CRC according to prognosis (HR: 0.402, p = 0.029).ConclusionsThis study built a robust radiomics signature for identifying the MSI status of CRC patients, which may assist individualised treatment decisions.Key Points • Our well-designed modelling strategies helped overcome the problem of data imbalance caused by the low incidence of MSI. • Genetic algorithm–enhanced artificial neural network–based CT radiomics signature can effectively distinguish the MSI status of CRC patients. • Kaplan–Meier survival analysis demonstrated that our signature could significantly stratify stage II CRC patients into high- and low-risk groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
汉堡包应助寒冷的亦凝采纳,获得10
7秒前
桐桐应助符fu采纳,获得10
11秒前
zqq完成签到,获得积分0
13秒前
13秒前
24秒前
25秒前
30秒前
漠北发布了新的文献求助10
30秒前
Akim应助欢呼的忘幽采纳,获得10
37秒前
41秒前
符fu发布了新的文献求助10
45秒前
47秒前
寒冷的亦凝完成签到,获得积分10
49秒前
慕子默完成签到,获得积分10
52秒前
bryceeluo完成签到,获得积分10
52秒前
一天一篇sci发布了新的文献求助100
59秒前
1分钟前
11完成签到 ,获得积分10
1分钟前
英俊的铭应助duanduan123采纳,获得10
1分钟前
1分钟前
Zilch完成签到 ,获得积分10
1分钟前
懒人发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
一天一篇sci完成签到,获得积分10
2分钟前
gyyy发布了新的文献求助10
2分钟前
2分钟前
懒人关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
wwwww发布了新的文献求助10
3分钟前
3分钟前
www完成签到,获得积分10
3分钟前
bkagyin应助qqq采纳,获得10
3分钟前
3分钟前
周城发布了新的文献求助10
3分钟前
王帅完成签到,获得积分10
3分钟前
3分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130230
求助须知:如何正确求助?哪些是违规求助? 2780956
关于积分的说明 7750532
捐赠科研通 2436201
什么是DOI,文献DOI怎么找? 1294557
科研通“疑难数据库(出版商)”最低求助积分说明 623731
版权声明 600590