Non-invasive prediction of microsatellite instability in colorectal cancer by a genetic algorithm–enhanced artificial neural network–based CT radiomics signature

微卫星不稳定性 医学 逻辑回归 无线电技术 结直肠癌 阶段(地层学) 肿瘤科 神经组阅片室 特征选择 人工智能 内科学 算法 癌症 放射科 计算机科学 微卫星 神经学 生物 精神科 古生物学 基因 等位基因 生物化学
作者
Xiaobo Chen,Lan He,Qingshu Li,Liu Liu,Suyun Li,Yuan Zhang,Zaiyi Liu,Yanqi Huang,Yun Mao,Xin Chen
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (1): 11-22 被引量:23
标识
DOI:10.1007/s00330-022-08954-6
摘要

ObjectiveThe stratification of microsatellite instability (MSI) status assists clinicians in making treatment decisions for colorectal cancer (CRC) patients. This study aimed to establish a CT-based radiomics signature to predict MSI status in patients with CRC.MethodsA total of 837 CRC patients who underwent preoperative enhanced CT and had available MSI status data were recruited from two hospitals. Radiomics features were extracted from segmented tumours, and a series of data balancing and feature selection strategies were used to select MSI-related features. Finally, an MSI-related radiomics signature was constructed using a genetic algorithm–enhanced artificial neural network model. Combined and clinical models were constructed using multivariate logistic regression analyses by integrating the clinical factors with or without the signature. A Kaplan–Meier survival analysis was conducted to explore the prognostic information of the signature in patients with CRC.ResultsTen features were selected to construct a signature which showed robust performance in both the internal and external validation cohorts, with areas under the curves (AUC) of 0.788 and 0.775, respectively. The performance of the signature was comparable to that of the combined model (AUCs of 0.777 and 0.767, respectively) and it outperformed the clinical model constituting age and tumour location (AUCs of 0.768 and 0.623, respectively). Survival analysis demonstrated that the signature could stratify patients with stage II CRC according to prognosis (HR: 0.402, p = 0.029).ConclusionsThis study built a robust radiomics signature for identifying the MSI status of CRC patients, which may assist individualised treatment decisions.Key Points • Our well-designed modelling strategies helped overcome the problem of data imbalance caused by the low incidence of MSI. • Genetic algorithm–enhanced artificial neural network–based CT radiomics signature can effectively distinguish the MSI status of CRC patients. • Kaplan–Meier survival analysis demonstrated that our signature could significantly stratify stage II CRC patients into high- and low-risk groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
anyilin发布了新的文献求助10
刚刚
2秒前
程程发布了新的文献求助10
2秒前
3秒前
萌兰134发布了新的文献求助10
3秒前
gyh完成签到,获得积分10
3秒前
4秒前
4秒前
shengdong发布了新的文献求助10
5秒前
13508104971发布了新的文献求助10
5秒前
科研通AI5应助彩色的万恶采纳,获得10
5秒前
咩咩完成签到,获得积分10
6秒前
fcc关注了科研通微信公众号
6秒前
米mi发布了新的文献求助10
6秒前
研友_Lw7OvL发布了新的文献求助10
6秒前
7秒前
龙来来发布了新的文献求助10
7秒前
研友_Z1xNWn完成签到,获得积分10
7秒前
7秒前
rrrrroxie发布了新的文献求助50
7秒前
8秒前
anyilin完成签到,获得积分10
8秒前
古月小兑发布了新的文献求助10
8秒前
替代发布了新的文献求助10
9秒前
11秒前
裴啦啦完成签到,获得积分10
12秒前
难过盼海发布了新的文献求助10
12秒前
啊炜完成签到,获得积分10
12秒前
王希澳完成签到,获得积分10
12秒前
13秒前
13秒前
文昊完成签到,获得积分10
13秒前
奇迹帽帽完成签到 ,获得积分10
15秒前
17秒前
sos完成签到,获得积分10
18秒前
18秒前
qwertnjj完成签到,获得积分10
20秒前
慕青应助难过盼海采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012193
求助须知:如何正确求助?哪些是违规求助? 4253582
关于积分的说明 13254590
捐赠科研通 4056325
什么是DOI,文献DOI怎么找? 2218635
邀请新用户注册赠送积分活动 1228299
关于科研通互助平台的介绍 1150728