Identification of potential biomarkers and their correlation with immune infiltration cells in schizophrenia using combinative bioinformatics strategy

生物 精神分裂症(面向对象编程) 计算生物学 基因共表达网络 基因 相关性 基因表达 生物信息学 机器学习 遗传学 计算机科学 医学 数学 精神科 基因本体论 几何学
作者
Zhijun Li,Xinwei Li,Mengdi Jin,Yang Liu,Yang He,Ningning Jia,Xingyao Cui,Yane Liu,Guoyan Hu,Qiong Yu
出处
期刊:Psychiatry Research-neuroimaging [Elsevier BV]
卷期号:314: 114658-114658 被引量:31
标识
DOI:10.1016/j.psychres.2022.114658
摘要

Many studies have identified changes in gene expression in brains of schizophrenia patients and their altered molecular processes, but the findings in different datasets were inconsistent and diverse. Here we performed the most comprehensive analysis of gene expression patterns to explore the underlying mechanisms and the potential biomarkers for early diagnosis in schizophrenia. We focused on 10 gene expression datasets in post-mortem human brain samples of schizophrenia downloaded from gene expression omnibus (GEO) database using the integrated bioinformatics analyses including robust rank aggregation (RRA) algorithm, Weighted gene co-expression network analysis (WGCNA) and CIBERSORT. Machine learning algorithm was used to construct the risk prediction model for early diagnosis of schizophrenia. We identified 15 key genes (SLC1A3, AQP4, GJA1, ALDH1L1, SOX9, SLC4A4, EGR1, NOTCH2, PVALB, ID4, ABCG2, METTL7A, ARC, F3 and EMX2) in schizophrenia by performing multiple bioinformatics analysis algorithms. Moreover, the interesting part of the study is that there is a correlation between the expression of hub genes and the immune infiltrating cells estimated by CIBERSORT. Besides, the risk prediction model was constructed by using both these genes and the immune cells with a high accuracy of 0.83 in the training set, and achieved a high AUC of 0.77 for the test set. Our study identified several potential biomarkers for diagnosis of SCZ based on multiple bioinformatics algorithms, and the constructed risk prediction model using these biomarkers achieved high accuracy. The results provide evidence for an improved understanding of the molecular mechanism of schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助我帅起来超酷采纳,获得10
1秒前
杨思睿发布了新的文献求助50
2秒前
研友_VZG7GZ应助姜惠采纳,获得10
3秒前
科研通AI2S应助Tao采纳,获得10
3秒前
Ameko809发布了新的文献求助10
4秒前
依灵完成签到,获得积分10
6秒前
z1y1p1完成签到,获得积分10
6秒前
嗯哼完成签到,获得积分10
7秒前
micett完成签到,获得积分10
7秒前
7秒前
8秒前
古卡可可完成签到,获得积分10
8秒前
10秒前
dangniuma发布了新的文献求助10
10秒前
11秒前
姜惠发布了新的文献求助20
11秒前
13秒前
13秒前
gloria完成签到 ,获得积分10
14秒前
14秒前
英姑应助勤劳滑板采纳,获得10
14秒前
emptyyy完成签到,获得积分10
15秒前
gbfgbdfbd完成签到,获得积分10
16秒前
ShengzhangLiu发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
852应助max采纳,获得10
18秒前
19秒前
19秒前
ZengQiu发布了新的文献求助10
19秒前
aptamer44发布了新的文献求助10
20秒前
jenningseastera应助yuqinghui98采纳,获得10
20秒前
21秒前
red完成签到,获得积分10
21秒前
瘦瘦怀亦发布了新的文献求助10
23秒前
23秒前
开朗可行完成签到,获得积分10
24秒前
朱文韬发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991995
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260801
捐赠科研通 3272413
什么是DOI,文献DOI怎么找? 1805820
邀请新用户注册赠送积分活动 882665
科研通“疑难数据库(出版商)”最低求助积分说明 809425