Identification of potential biomarkers and their correlation with immune infiltration cells in schizophrenia using combinative bioinformatics strategy

生物 精神分裂症(面向对象编程) 计算生物学 基因共表达网络 基因 相关性 基因表达 生物信息学 机器学习 遗传学 计算机科学 医学 数学 精神科 基因本体论 几何学
作者
Zhijun Li,Xinwei Li,Mengdi Jin,Yang Liu,Yang He,Ningning Jia,Xingyao Cui,Yane Liu,Guoyan Hu,Qiong Yu
出处
期刊:Psychiatry Research-neuroimaging [Elsevier BV]
卷期号:314: 114658-114658 被引量:39
标识
DOI:10.1016/j.psychres.2022.114658
摘要

Many studies have identified changes in gene expression in brains of schizophrenia patients and their altered molecular processes, but the findings in different datasets were inconsistent and diverse. Here we performed the most comprehensive analysis of gene expression patterns to explore the underlying mechanisms and the potential biomarkers for early diagnosis in schizophrenia. We focused on 10 gene expression datasets in post-mortem human brain samples of schizophrenia downloaded from gene expression omnibus (GEO) database using the integrated bioinformatics analyses including robust rank aggregation (RRA) algorithm, Weighted gene co-expression network analysis (WGCNA) and CIBERSORT. Machine learning algorithm was used to construct the risk prediction model for early diagnosis of schizophrenia. We identified 15 key genes (SLC1A3, AQP4, GJA1, ALDH1L1, SOX9, SLC4A4, EGR1, NOTCH2, PVALB, ID4, ABCG2, METTL7A, ARC, F3 and EMX2) in schizophrenia by performing multiple bioinformatics analysis algorithms. Moreover, the interesting part of the study is that there is a correlation between the expression of hub genes and the immune infiltrating cells estimated by CIBERSORT. Besides, the risk prediction model was constructed by using both these genes and the immune cells with a high accuracy of 0.83 in the training set, and achieved a high AUC of 0.77 for the test set. Our study identified several potential biomarkers for diagnosis of SCZ based on multiple bioinformatics algorithms, and the constructed risk prediction model using these biomarkers achieved high accuracy. The results provide evidence for an improved understanding of the molecular mechanism of schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eden完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
满意白开水完成签到,获得积分20
3秒前
科研通AI5应助lllkkk采纳,获得10
4秒前
高贵冬卉发布了新的文献求助10
5秒前
33发布了新的文献求助30
5秒前
7秒前
ding应助lllth采纳,获得10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
温暖砖头发布了新的文献求助10
13秒前
茶树菇发布了新的文献求助10
14秒前
Rabbit完成签到 ,获得积分10
15秒前
燧人氏发布了新的文献求助10
16秒前
哆来米完成签到,获得积分10
16秒前
项锡凯完成签到 ,获得积分10
18秒前
20秒前
wang完成签到,获得积分10
21秒前
wang发布了新的文献求助20
25秒前
无私啤酒完成签到,获得积分10
26秒前
lllkkk发布了新的文献求助10
26秒前
26秒前
28秒前
瘦瘦白薇发布了新的文献求助10
28秒前
小马甲应助33采纳,获得30
29秒前
赵文浩应助LingYun采纳,获得30
29秒前
魏头头发布了新的文献求助10
30秒前
袁保蓉发布了新的文献求助10
32秒前
充电宝应助曲幻梅采纳,获得10
33秒前
eric888应助eden采纳,获得30
34秒前
高贵冬卉完成签到 ,获得积分10
35秒前
我是老大应助科研通管家采纳,获得10
35秒前
35秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
Downey应助科研通管家采纳,获得150
36秒前
共享精神应助茶树菇采纳,获得10
36秒前
JamesPei应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049387
求助须知:如何正确求助?哪些是违规求助? 4277396
关于积分的说明 13333673
捐赠科研通 4092082
什么是DOI,文献DOI怎么找? 2239476
邀请新用户注册赠送积分活动 1246338
关于科研通互助平台的介绍 1174900