Identification of potential biomarkers and their correlation with immune infiltration cells in schizophrenia using combinative bioinformatics strategy

生物 精神分裂症(面向对象编程) 计算生物学 基因共表达网络 基因 相关性 基因表达 机制(生物学) 生物信息学 遗传学 医学 数学 精神科 哲学 基因本体论 几何学 认识论
作者
Zhijun Li,Xinwei Li,Mengdi Jin,Yang Liu,Yingkun He,Ningning Jia,Xueling Cui,Yane Liu,Guoyan Hu,Qiong Yu
出处
期刊:Psychiatry Research-neuroimaging [Elsevier]
卷期号:314: 114658-114658 被引量:20
标识
DOI:10.1016/j.psychres.2022.114658
摘要

Many studies have identified changes in gene expression in brains of schizophrenia patients and their altered molecular processes, but the findings in different datasets were inconsistent and diverse. Here we performed the most comprehensive analysis of gene expression patterns to explore the underlying mechanisms and the potential biomarkers for early diagnosis in schizophrenia. We focused on 10 gene expression datasets in post-mortem human brain samples of schizophrenia downloaded from gene expression omnibus (GEO) database using the integrated bioinformatics analyses including robust rank aggregation (RRA) algorithm, Weighted gene co-expression network analysis (WGCNA) and CIBERSORT. Machine learning algorithm was used to construct the risk prediction model for early diagnosis of schizophrenia. We identified 15 key genes (SLC1A3, AQP4, GJA1, ALDH1L1, SOX9, SLC4A4, EGR1, NOTCH2, PVALB, ID4, ABCG2, METTL7A, ARC, F3 and EMX2) in schizophrenia by performing multiple bioinformatics analysis algorithms. Moreover, the interesting part of the study is that there is a correlation between the expression of hub genes and the immune infiltrating cells estimated by CIBERSORT. Besides, the risk prediction model was constructed by using both these genes and the immune cells with a high accuracy of 0.83 in the training set, and achieved a high AUC of 0.77 for the test set. Our study identified several potential biomarkers for diagnosis of SCZ based on multiple bioinformatics algorithms, and the constructed risk prediction model using these biomarkers achieved high accuracy. The results provide evidence for an improved understanding of the molecular mechanism of schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助wxyllxx采纳,获得10
1秒前
1秒前
lixl0725完成签到,获得积分10
1秒前
几酌应助科研通管家采纳,获得10
1秒前
oceanao应助科研通管家采纳,获得10
1秒前
hogluins完成签到,获得积分10
1秒前
1秒前
几酌应助科研通管家采纳,获得40
1秒前
深情安青应助科研通管家采纳,获得50
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
sissiarno应助科研通管家采纳,获得30
1秒前
2秒前
酷波er应助zhzhzh采纳,获得10
2秒前
Raul发布了新的文献求助30
2秒前
3秒前
TOM驳回了大个应助
4秒前
夕荀发布了新的文献求助10
5秒前
领导范儿应助隔壁老六采纳,获得30
6秒前
6秒前
TS发布了新的文献求助30
7秒前
奥利奥完成签到 ,获得积分10
7秒前
7秒前
9秒前
ZZ发布了新的文献求助20
11秒前
11秒前
TJW完成签到 ,获得积分10
11秒前
小杨发布了新的文献求助10
11秒前
科研三井泽完成签到,获得积分10
12秒前
犹豫嚣发布了新的文献求助10
12秒前
一叶应助卢佳瑶采纳,获得10
14秒前
chali48发布了新的文献求助10
16秒前
纪不愁完成签到,获得积分10
17秒前
所所应助wxyllxx采纳,获得10
17秒前
Hello应助foxp3采纳,获得10
17秒前
FashionBoy应助momo采纳,获得10
17秒前
18秒前
标致的苡发布了新的文献求助10
18秒前
18秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168294
求助须知:如何正确求助?哪些是违规求助? 2819584
关于积分的说明 7927169
捐赠科研通 2479425
什么是DOI,文献DOI怎么找? 1320833
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458